Online ISSN 2313-1519
Print    ISSN 1812-2892
Abstract - Intestinal epithelial cells necroptosis and its association with intestinal inflammation
[PDF]           
Anton S. Tkachenko

ABSTRACT

This review focuses on the role of necroptosis, an alternative mode of cell death, in the pathogenesis of diseases associated with intestinal inflammation whose prevalence has been significantly increased for last decades, which substantiates the relevance of this issue. Necroptosis is a programmed necrosis accompanied by the activation of RIPK3 and MLKL kinases. The article covers molecular mechanisms of necroptosis, the role of necroptosis of epithelial intestinal cells in the regulation of intestinal homeostasis, its potential triggers, as well as features of necroptosis during the development of intestinal inflammation. The current review suggests that the development and use of medicines that may target necroptosis-associated kinases seem to be a promising therapeutic strategy.

Keywords: necroptosis, cell death, intestinal epithelial cells, inflammatory bowel disease, intestinal inflammation

Corresponding Author: Anton S. Tkachenko, Candidate of Medicine, assistant professor, Biochemistry Department, Kharkiv National Medical University, Kharkiv, Ukraine. Tel.: +38-050-109-45-54. E-mail: antontkachenko555@gmail.com

References

1. de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL et al. Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015; 2015:493012. https://doi.org/10.1155/2015/493012

2. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014; 20(1):91-9. https://doi.org/10.3748/wjg.v20.i1.91

3. Wehkamp J, Götz M, Herrlinger K, Steurer W, Stange EF. Inflammatory bowel disease. Dtsch Arztebl Int. 2016; 113(5):72-82. https://doi.org/10.3238/arztebl.2016.0072

4. Kelsen JR, Sullivan KE. Inflammatory bowel disease in primary immunodeficiencies. Curr Allergy Asthma Rep. 2017; 17(8):57. https://doi.org/10.1007/s11882-017-0724-z

5. Blander JM. Death in the intestinal epithelium – Basic biology and implications for inflammatory bowel disease. The FEBS journal. 2016; 283(14):2720-2730. https://doi.org/10.1111/febs.13771

6. Nunes T, Bernardazzi C, de Souza HS. Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. BioMed Research International. 2014; 2014:218493. https://doi.org/10.1155/2014/218493

7. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation. 2018; 15:199. https://doi.org/10.1186/s12974-018-1235-0

8. Kearney CJ, Martin SJ. An inflammatory perspective on necroptosis. Mol Cell. 2017; 65(6):965-973. https://doi.org/10.1016/j.molcel.2017.02.024

9. Newton K, Manning G. Necroptosis and inflammation. Annu Rev Biochem. 2016; 85:743-63. https://doi.org/10.1146/annurev-biochem-060815-014830

10. Negroni A, Cucchiara S, Stronati L. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of Inflammation. 2015; 2015:250762. https://doi.org/10.1155/2015/250762

11. Negroni A, Colantoni E, Pierdomenico M, Palone F, Costanzo M, Oliva S, et al. RIP3 and pMLKL promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells. Dig Liver Dis. 2017; 49(11):1201-1210. https://doi.org/10.1016/j.dld.2017.08.017

12. Huang D, Zheng X, Wang ZA, Chen X, He WT, Zhang Y, et al. The MLKL Channel in necroptosis is an octamer formed by tetramers in a dyadic process. Mol Cell Biol. 2017; 37(5):e00497-16. https://doi.org/10.1128/MCB.00497-17

13. Günther C, Buchen B, He GW, Hornef M, Torow N, Neumann H, et al. Caspase-8 controls the gut response to microbial challenges by TNF-α-dependent and independent pathways. Gut. 2015; 64:601–10. https://doi.org/10.1136/gutjnl-2014-307226

14. Mihaly SR, Sakamachi Y, Ninomiya-Tsuji J, Morioka S. Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1. Scientific Reports. 2017; 7:2918. https://doi.org/10.1038/s41598-017-03112-1

15. Feltham R, Vince JE, Lawlor KE. Caspase-8: not so silently deadly. Clinical & Translational Immunology. 2017; 6(1):e124-. https://doi.org/10.1038/cti.2016.83

16. Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J. 2016; 283(14):2701-19. https://doi.org/10.1111/febs.13575

17. Patterson AM, Watson AJM. Deciphering the complex signaling systems that regulate intestinal epithelial cell death processes and shedding. Frontiers in Immunology. 2017; 8:841. https://doi.org/10.3389/fimmu.2017.00841

18. Okumura R, Takeda K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med. 2017; 49(5):e338. https://doi.org/10.1038/emm.2017.20

19. Krysko O, Aaes T, Kagan VE, D'Herde K, Bachert C, Leybaert L, et al. Necroptotic cell death in anti-cancer therapy. Immunol Rev. 2017; 280(1):207-219. https://doi.org/10.1111/imr.12583

20. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38(2):209-23. https://doi.org/10.1016/j.immuni.2013.02.003

21. Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 2016; 15(2):274-87. https://doi.org/10.1016/j.celrep.2016.03.037

22. Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D. Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis. 2015; 6(11):e1975. https://doi.org/10.1038/cddis.2015.316

23. Zhu K, Liang W, Ma Z, Xu D, Cao S, Lu X, et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 2018; 9(5):500. https://doi.org/10.1038/s41419-018-0524-y

24. Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, et al. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology. 2016; 5(6):e1149673. https://doi.org/10.1080/2162402X.2016.1149673

25. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011; 477:330–4. https://doi.org/10.1038/nature10273

26. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011; 477:335–9. https://doi.org/10.1038/nature10400

27. Pierdomenico M, Negroni A, Stronati L, Vitali R, Prete E, Bertin J, et al. Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol. 2014; 109(2):279-87. https://doi.org/10.1038/ajg.2013.403

28. Xiao H. Epithelial TSC1-mTOR controls RIPK3-dependent necroptosis and susceptibility to IBD by sensing dietary and microbial metabolites. J Immunol. 2018; 200(1)53.12.

29. Silva FAR, Rodrigues BL, Ayrizono M de LS, Leal RF. The immunological basis of inflammatory bowel disease. Gastroenterology Research and Practice. 2016; 2016:2097274. https://doi.org/10.1155/2016/2097274

30. Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008; 263(6):591-6. https://doi.org/10.1111/j.1365-2796.2008.01953.x

31. Chen D, Tong J, Yang L, Wei L, Stolz DB, Yu J, et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci USA. 2018; 115(15):3930-3935. https://doi.org/10.1073/pnas.1717190115

32. Becker C, Watson AJ, Neurath MF. Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology. 2013; 144(2):283-93. https://doi.org/10.1053/j.gastro.2012.11.035

33. Dong W, Zhang M, Zhu Y, Chen Y, Zhao X, Li R, et al. Protective effect of NSA on intestinal epithelial cells in a necroptosis model. Oncotarget. 2017; 8(49):86726-86735. https://doi.org/10.18632/oncotarget.21418

34. Liu ZY, Wu B, Guo YS, Zhou YH, Fu ZG, Xu BQ, et al. Necrostatin-1 reduces intestinal inflammation and colitis-associated tumorigenesis in mice. Am J Cancer Res. 2015;5(10):3174-85.

Volume 1, Number 51 (2019)