Online ISSN 2313-1519
Print    ISSN 1812-2892
Abstract - The role of neutrophilic extracellular traps in oncogenesis
[PDF]           
Mereke Maratkyzy, Aruna Kosybaeva, Naylya Kabildina, Anelya Beisenaeva

ABSTRACT

Views on the role of extracellular neutrophilic traps in oncology vary greatly. On the one hand, there is evidence of the anticarcinogenic properties of neutrophil networks associated with the direct destruction of tumor cells and stimulation of the immune system. Cytotoxicity towards tumor cells is manifested by trap components (myeloperoxidase, proteinases and histones), while DNA strands are considered as a kind of tool for capturing tumor cells and limiting their further spread.

Key words: extracellular neutrophilic traps, oncology, tumor

Corresponding Author: Mereke Maratkyzy, Oncology and Radiodiagnosis Department, Karaganda Medical University. Address: 40, Gogol Street, Karaganda, Republic of Kazakhstan. Tel.: +77001427530. Email: MaratkyzyM@kgmu.kz

References

1.  Lisjanyj NI, Lysjanyj AA. Neutrophils and Oncogenesis [in Russian]. Klinicheskaja onkologija. 2018;1(29):40-45.

2.  Dolgushin II, Shishkova JuS, Semenova AB, Kazachkov EL, Vazhenin AV, Shamanova AV i dr. A look at the role of neutrophil extracellular DNA as a component of the tumor microenvironment in carcinogenesis processes [in Russian]. Ural'skij medicinskij zhurnal. 2014;2(116):19-22.

3.  Danilova AB, Baldueva IA. Neutrophils as a component of the tumor microenvironment [in Russian]. Voprosy onkologii. 2016;62(1):36-44

4.  Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012; 33 (5):949-955. https://doi.org/10.1093/carcin/bgs123

5.  Haitov RM, Ignat'eva GA, Sidorovich IG. Immune system and pathology [in Russian]. Immunologija. Norma i patologija. 2010; 215 -240

6.  Jarilin AA. Neutrophils [in Russian]. Immunologija. 2010; 52 – 57.

7.  Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010; 207:1853–62. https://doi.org/10.1084/jem.20100239

8.  Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013; 210(7):1283–99. https://doi.org/10.1084/jem.20122220

9. Fuchs TA, Abed U, Goosmann C. Novel cells death program leads to neutrophil extracelllular traps. J. Cell Biol. 2007; 176(2):231-241. https://doi.org/10.1083/jcb.200606027

10. Brinkmann V, Rechard U, Goosmann C. Neutrophil extracelllulartraps kill bacteria. Science 2004; 303:1532-1535. https://doi.org/10.1126/science.1092385

11. Korotina OL, Generalov II. Neutrophil extracellular traps: mechanisms of formation, function [in Russian]. Immunopatologija, allergologija, infektologija. 2012; 4:23-32

12. Yipp BG, Kubes P. NETosis: How vital is it? Blood. 2013; 122(16):2784-2794. https://doi.org/10.1182/blood-2013-04-457671

13. Andrjukov BG, Somova LM, Drobot EI, Matosova EB. Neutrophil granulocyte defensive strategies against pathogenic bacteria [in Russian]. Zdorov'e. Medicinskaja jekologija. Nauka. 2017; 1(68):4-18.

14. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2012; 185:7413-25. https://doi.org/10.4049/jimmunol.1000675

15. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon, HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009; 16:1438-44. https://doi.org/10.1038/cdd.2009.96

16. Itagaki K, Kaczmarek E, Lee YT, Tang IT, Isal B, Adibnia Y et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS One. 2015; 10(3):10-11. https://doi.org/10.1371/journal.pone.0120549

17.  Savochkina AJu, Andreeva JuS, II. Dolgushin II. Methods of determination and the biological role of neutrophilic traps [in Russian]. Vestnik Ural'skoj akademicheskoj nauki. 2009; 2(1):335-336.

18.  Vorob'eva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation, role in normal and pathological conditions (review) [in Russian]. Biohimija. 2014; 79(12):1580-1591

19.  Berger-Achituv S, Brinkmann V, Abed UA, Kühn LI, Ben-Ezra J. Elhasid R, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Frontiers Immunol. 2013; 4:48-49. https://doi.org/10.3389/fimmu.2013.00048

20. Carmona-Rivera C, Kaplan MJ. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. semin. Immunopathol. 2013; 35(4):455-463. https://doi.org/10.1007/s00281-013-0375-7

21. Dumitru CA, Moses K. Тrellakis S. et al. neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Сancer Immunol. Immunother. 2012; 61(8):1155-1167. https://doi.org/10.1007/s00262-012-1294-5

22. Pillay J, Тak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol. Life sci. 2013; 70(20):3813-3827. https://doi.org/10.1007/s00018-013-1286-4

23. Sagiv JY, Michaeli J, Assi S. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports. 2015; 10(4):562–573. https://doi.org/10.1016/j.celrep.2014.12.039

24. Yui S, Osawa Y, Ichisugi T, Morimoto-Kamata R. Neutrophil cathepsin G, but not elastase, induces aggregation of MCF-7 mammary carcinoma cells by a protease activity-dependent cell-oriented mechanism. Mediators Inflamm. 2014; 12. https://doi.org/10.1155/2014/971409.971409

25.  Fomenko JuM, Zhumakaeva SS, Zhumakaeva AM, Sirota VB, Muravljova LE. Extracellular nucleic acids in oncological pathology [in Russian]. 2018; 2

26.  Semenova AB, Kazachkov EL., Dolgushin II, Vazhenin AV. Formation of extracellular DNA networks by neutrophilic granulocytes as an additional diagnostic criterion for the degree of malignancy of breast carcinomas [in Russian]. Ural'skij medicinskij zhurnal. 2016; 3:72-76.

27.  Jin W, Xu HX, Zhang SR, Li H, Wang WQ, Gao HL, Wu CT, Xu JZ, Qi ZH, Li S, Ni QX, Liu L, Yu XJ Tumor-Infiltrating NETs Predict Postsurgical Survival in Patients with Pancreatic Ductal Adenocarcinoma. Send to Ann Surg Oncol. 2019; 26(2):635-643. https://doi.org/10.1245/s10434-018-6941-4

28.  Nie M, Yang L, Bi X, Wang Y, Sun P, Yang H, Liu P, Li Z, Xia Y, Jiang W. Neutrophil extracellular traps induced by IL-8 promote diffuse large B cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 2018; 1226. https://doi.org/10.1158/1078-0432.CCR-18-1226

29.  Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME et al Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018; 361(6409). https://doi.org/10.1126/science.aao4227

30.  Albrengues J, Wysocki RW, Maiorino L, Egeblad M. Re-cyclin' Cell-Cycle Components to Make NETs. Dev Cell. 2017; 43(4):379-380. https://doi.org/10.1016/j.devcel.2017.11.002

31.  Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1"  versus "N2" TAN. Cancer Cell. 2009; 16:183-194. https://doi.org/10.1016/j.ccr.2009.06.017

32.  Shaul ME, Levy L, Sun J, Mishalian I, Singhal S, Kapoor V. et al Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology. 2016; 13;5(11):e1232221. https://doi.org/10.1080/2162402X.2016.1232221

33.  Homa-Mlak I, Majdan A, Mlak R, Małecka-Massalska T. Metastatic potential of NET in neoplastic disease. Postepy Hig Med Dosw.. 2016; 31;70(0):887-95.

34.  Kobayashi Y. Neutrophil biology: an update. EXCLI J. 2015; 10(14):220-227. https://doi.org/10.17179/excli2015-102

35.  Semenova AB, Shamanova AJu. The microenvironment of invasive carcinomas of the breast of "non-specific" and "specific" types, taking into account the malignancy of tumors (literature review) [in Russian]. Ural'skij medicinskij zhurnal. 2014; 8:23-28.

36.  Semenova AB, Shamanova AJu, Shishkova JuS, Dolgushin II, Kazachkov EL, Vazhenin AV. The formation of autologous neutrophils extracellular DNA networks when meeting with tumor cells of breast carcinoma, depending on the degree of malignancy and tumor receptor status [in Russian]. Ural'skij medicinskij zhurnal. 2014; 8:29-32

37. Garley M, Dziemiańczyk-Pakieła D, Grubczak K, Surażyński A, Dąbrowska D, Ratajczak-Wrona W. et al Differences and similarities in the phenomenon of NETs formation in oral inflammation and in oral squamous cell carcinoma. J Cancer. 2018; 9(11):1958-1965. https://doi.org/10.7150/jca.24238

38.  Guglietta S, Chiavelli A, Zagato E, Krieg C, Gandini S, Ravenda PS et al Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 2016; 7:11037. https://doi.org/10.1038/ncomms11037

39.  Elyamany G, Alzahrani AM, Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol. 2014; 8:129–37. https://doi.org/10.4137/CMO.S18991

40.  Mansour A, Ismael Y, Abunasser M, Hammode E, Turfa R, Abdel-Razeq H. The application of clinical variables and models toсpredict pulmonary embolism in cancer patients: a comprehensive single cancer center experience. Patient Prefer Adherence. 2013; 7:1111–6. https://doi.org/10.2147/PPA.S46372

41.  Dolgushin I.I., Semenova A.B., Shishkova Ju.S., Kazachkov E.L., Vazhenin A.V., Shamanova A.Ju. Structural features of the formation of extracellular DNA networks by neutrophilic granulocytes when meeting with laryngeal carcinoma tumor cells [in Russian]. Ural'skij medicinskij zhurnal. 2015; 9:119-122

42. Fomenko Y., Kolesnikova Y., Beynikova I., Muravlyova L, Sirota V, Bakirova R. Influence of Combined Therapy on Generation of Neutrophil Extracellular Traps in Patients with Cervical Cancer. Open Access Maced J Med Sci. 2018; 6(11):2097-2100. https://doi.org/10.3889/oamjms.2018.483

Volume 1, Number 51 (2019)