Онлайн (Онлайн)ISSN 2313-1519
Баспалық (Печатный) ISSN 1812-2892
Тұжырымдама (Резюме) - The role of aquaporins in the regulation of body fluids homeostasis
[PDF]           
Olayinka Rasheed Ibrahim, Ayodele Olufemi Soladoye

ABSTRACT

The rapid transfer of the water across the cells occurs via specialized channels called aquaporins (AQPs). The structure of AQPs comprises of homotetramers with each of the four units functioning as an independent channel. The distribution of total body water is into intracellular (40% of total body weight) and extracellular compartments (20% of total body weight). While there is some degree of physical separation of the compartments, water freely moved between them with the intent of achieving homeostasis. The typical role of AQP is to act as an effector in the regulation of water at cellular, tissue and organ levels, although recent evidence suggested it can also act as a sensor-effector system. The regulatory roles include cell volume regulation (CVR), which comprises of regulatory volume decrease and regulatory volume increase. The AQPs are also involved in the total body water homeostasis via short- and long-term regulatory mechanisms. The short-term water regulation takes place within minutes, and it typified by insertion of AQP2 into the apical cell membrane of collecting duct following activation of V2 receptor by vasopressin. The long-term regulation by the AQPs involves increased expression of AQPs. Hence, this narrative reviewed the importance of AQPs in the ability to facilitate highly efficient, yet strictly selective permeation of small molecules including water, solutes, and ions, transport across the plasma membrane as it relates to body fluid homeostasis.

Key words: aquaporins, total body fluids, regulations

Corresponding author: Dr. Olayinka R Ibrahim, Department of Pediatrics, Federal Medical Centre, Katsina, Katsina State, Nigeria. Tel.: +2348066188403, E-mail: ibroplus@gmail.com

 

REFERENCES

 

1.   Verbalis J. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003; 17(4):471-503. https://doi.org/10.1016/S1521-690X(03)00049-6

2.   Pohl P. Combined transport of water and ions through membrane channels. Biol Chem. 2004; 385(10):921-926. https://doi.org/10.1515/BC.2004.120

3.   Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol. 1999; 10(6):1337-1345.

4.   Goodman BE. Transport of small molecules across cell membranes: water channels and urea transporters. Adv Physiol Educ. 2002; 26(3):146-157. https://doi.org/10.1152/advan.00027.2002

5.   Benga G. Water channel proteins (later called aquaporins) and relatives: Past, present, and future. IUBMB Life. 2009; 61(2):112-133. https://doi.org/10.1002/iub.156

6.   Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels – from atomic structure to clinical medicine. J Physiol. 2002; 542:3-16. https://doi.org/10.1113/jphysiol.2002.020818

7.   Benga G. On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Mol Aspects Med. 2012; 33(5-6):514-517. https://doi.org/10.1016/j.mam.2012.04.003

8.   Tanghe A, Van Dijck P, Thevelein JM. Why do microorganisms have aquaporins? Trends Microbiol. 2006; 14(2):78-85. https://doi.org/10.1016/j.tim.2005.12.001

9.   Benga G. Aquaporinology. Acta Endocrinol. 2014; 1(1):1-8. https://doi.org/10.4183/aeb.2014.1

10. Nordén K. From Sequence to Structure: Characterizing Human and Plant Aquaporins. Department of Chemistry, Lund University; 2012.

11. King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol. 2004; 5(9):687-698. https://doi.org/10.1038/nrm1469

12. Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, et al. The three-dimensional structure of aquaporin-1. Nature. 1997; 387(6633):624-627. https://doi.org/10.1038/42512

13. Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channesls. Annu Rev Biochem. 1999; 68:425-458. https://doi.org/10.1146/annurev.biochem.68.1.425

14. Gonen T, Walz T. The structure of aquaporins. Quartely Rev Biophys. 2006; 39(4):361-396. https://doi.org/10.1017/S0033583506004458

15. Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WEC, Robbins RA, et al. Crystal structure of human aquaporin 4 at 1 . 8 Å and its mechanism of conductance. PNAS. 2009; 106(18):7437-7442. https://doi.org/10.1073/pnas.0902725106

16. Agarwal SK, Gupta A. Aquaporins : The renal water channels. Indian J Nephrol. 2010; 18(3):95-100. https://doi.org/10.4103/0971-4065.43687

17. Brown D, Katsura T, Gustafson CE. Cellular mechanisms of aquaporin trafficking. Am J Physiol. 1998; 275(3 Pt 2):F328-31. https://doi.org/10.1152/ajprenal.1998.275.3.F328

18. Gravelle S, Joly L, Detcheverry F, Ybert C, Cottin-Bizonne C, Bocquet L. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci U S A. 2013; 110(41):16367-1672. https://doi.org/10.1073/pnas.1306447110

19. De Groot BL, Hub JS, Grubmüller H. Dynamics and energetics of permeation through aquaporins. What Do we learn from molecular dynamics simulations? Handb Exp Pharmacol. 2009; 190:57-76. https://doi.org/10.1007/978-3-540-79885-9_3

20. Linda S C. BRS Physiology. 5th ed. Philadelphia,: Lippincott Williams & Wilkins; 2011.

21. Bianchetti MG, Simonetti GD, Bettinelli A. Body fluids and salt metabolism - Part I. Ital J Pediatr. 2009; 35(1):36. https://doi.org/10.1186/1824-7288-35-36

22. Sembulingam K, Sembuligan P. Essential of Medical Physiology. 6th ed. India: Jaypee Brothers Medical Publishers (P) Ltd; 2012.

23. Knepper MA, Kwon T, Nielsen S, Knepper, Mark A; Kwon, Tae-Hwan; Nielsen S. Molecular Physiology of Water Balance. N Engl J Med. 2015; 372(14):1349-1358. https://doi.org/10.1056/NEJMra1404726

24. Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A. A physiologist’s view of homeostasis. Adv Physiol Educ. 2015; 39(4):259-266. https://doi.org/10.1152/advan.00107.2015

25. Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014; 52(2). https://doi.org/10.1530/JME-13-0268

26. Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, et al. Biochimica et Biophysica Acta Human aquaporins : Regulators of transcellular water flow. Biochim Biophys Acta. 2014; 1840(5):1492-1506. https://doi.org/10.1016/j.bbagen.2013.09.033

27. Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, et al. Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J. 2008; 22(10):3672-3684. https://doi.org/10.1096/fj.08-111872

28. Madeira A, Fernández-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafré V, et al. Human Aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity. 2014; 22(9):2010-2017. https://doi.org/10.1002/oby.20792

29. Kitchen P, Öberg F, Sjöhamn J, Hedfalk K, Bill RM, Conner C, et al. Plasma membrane abundance of human aquaporin 5 is dynamically regulated by multiple pathways. PLoS One. 2015; 10(11):1-17. https://doi.org/10.1371/journal.pone.0143027

30. Ishibashi K, Kondo S, Hara S, Morishita Y. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol. 2011; 300(3):R566-R576. https://doi.org/10.1152/ajpregu.90464.2008

31. Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015; 10(5):852-862. https://doi.org/10.2215/CJN.10741013

32. Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J Physiol. 2001; 537(Pt 2):347-362. https://doi.org/10.1111/j.1469-7793.2001.00347.x

33. Piao L, Li HY, Park C. Mechanosensitivity of voltage‐gated K+ currents in rat trigeminal ganglion neurons. J Neurosci Res. 2006; 1380:1373-1380. https://doi.org/10.1002/jnr

34. Heo J, Meng F, Hua SZ. Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor. Anal Chem. 2008; 80(18):6974-6980. https://doi.org/10.1021/ac8008498

35. Liu X, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W, Melvin JE, et al. A role for AQP5 in activation of TRPV4 by hypotonicity: Concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem. 2006; 281(22):15485-15495. https://doi.org/10.1074/jbc.M600549200

36. Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol. 2016; 17(5):293-307. https://doi.org/10.1038/nrm.2016.29

37. Nielsen S. Renal aquaporins : an overview. BJU Int. 2002; 90:2-7. https://doi.org/10.1046/j.1464-410X.90.s3.1.x

38. Park E, Kwon T, Ph D. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 2015; 13:1-6. https://doi.org/10.5049/EBP.2015.13.1.1

39. Kasono K, Saito T, Saito T, Tamemoto H, Yanagidate C, Uchida S, et al. Hypertonicity regulates the aquaporin-2 promoter independently of arginine vasopressin. Nephrol Dial Transplant. 2005; 20(3):509-515. https://doi.org/10.1093/ndt/gfh677

40. Matsuzaki T, Yaquchi T, Schimizu K, Kita A, Ishibashi K, Takata K, et al. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int. 2016; 1-13. https://doi.org/10.1007/s12565-016-0325-2

41. Verkman AS. Lessons on Renal Physiology from Transgenic Mice Lacking Aquaporin Water Channels. 1999; (12):1126-1135.

42. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013; 14(4):265-277. https://doi.org/10.1038/nrn3468

43. Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002; 22(4):367-378. https://doi.org/10.1097/00004647-200204000-00001

44. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta - Biomembr. 2006; 1758(8):1085-1093. https://doi.org/10.1016/j.bbamem.2006.02.018

45. Zador Z, Stiver S, Wang V, Manley GT. Aquaporins. Handb Exp Pharmacol. 2009; 190(190):159-170. https://doi.org/10.1007/978-3-540-79885-9

46. Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007; 22(6):778-784. https://doi.org/10.1007/s00467-006-0411-0

47. Beitz E, Zenner HP, Schultz JE. Aquaporin-mediated fluid regulation in the inner ear. Cell Mol Neurobiol. 2003; 23(3):315-329. https://doi.org/10.1023/A:1023636620721

48. Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005; 118:3225-3232. https://doi.org/10.1242/jcs.02519

49. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005; 19(1):76-78. https://doi.org/10.1096/fj.04-1711fje

50. Vilas G, Krishnan D, Kumar S, Malhotra D, Margolis B. Increased water flux induced by an aquaporin-1 / carbonic anhydrase II interaction. Mol Biol Cell. 2015; 26:1106-1118. https://doi.org/10.1091/mbc.E14-03-0812

51. Egan JR, Butler TL, Au CG, Tan YM, North KN, Winlaw DS. Myocardial water handling and the role of aquaporins. Biochim Biophys Acta - Biomembr. 2006; 1758(8):1043-1052. https://doi.org/10.1016/j.bbamem.2006.05.021

52. Frias T, Duarte R. Aquaporins in physiology and pathology. TRENDS Sport Sci. 2014; 3(21):135-144.

53. Fronius M, Clauss WG, Althaus M. Why do we have to move fluid to be able to breathe? Front Physiol. 2012; 3(146):1-9. https://doi.org/10.3389/fphys.2012.00146

54. Verkman  a. S. Aquaporins in Clinical Medicine. Annu Rev Med. 2012; 63(1):303-316. https://doi.org/10.1146/annurev-med-043010-193843

55. McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes FM. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002; 143(8):2905-2912. https://doi.org/10.1210/en.143.8.2905

56. Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY. Function of aquaporins in female and male reproductive systems. Hum Reprod Updat. 2006 ;12(6):785-795. https://doi.org/dml035 [pii]r10.1093/humupd/dml035

57. Yeung C-H. Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl. 2010; 12(4):490-499. https://doi.org/10.1038/aja.2010.40

58. Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med. 2012; 33(5-6):642-650. https://doi.org/10.1016/j.mam.2012.03.001

59. Verkman AS. Aquaporins : translating bench research to human disease. J Exp Biol. 2009; 212:1707-1715. https://doi.org/10.1242/jeb.024125

60. Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol. 2004; 286(3):C529-C537. https://doi.org/10.1152/ajpcell.00408.2003

61. Mobasheri A, Marples D, Young IS, Floyd R V., Moskaluk CA, Frigeri A. Distribution of the AQP4 water channel in normal human tissues: Protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels. 2007; 1(1):29-38. https://doi.org/10.4161/chan.3735

62. Boury-Jamot M, Sougrat R, Tailhardat M, Varlet B Le, Bont?? F, Dumas M, et al. Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta - Biomembr. 2006; 1758(8):1034-1042. https://doi.org/10.1016/j.bbamem.2006.06.013

63. Verkman AS. Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Rev Mol Med. 2008; 10:e13. https://doi.org/10.1017/S1462399408000690

64. Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, et al. Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol. 2001; 281(1):G247-G254. https://doi.org/10.1152/ajpgi.2001.281.1.G247

Көлем (Объем) 4, Сан (Число) 54 (2019)