Clinical value of NTproBNP and lactate parameters in infants with congenital heart defects.
More Detail
1 Neonatal intensive care unit, Scientific Research Institute of Pediatrics named after K. Farajova, Baku, Azerbaijan
* Corresponding Author
OPEN ACCESS
90 Views
0 Downloads
ABSTRACT
Congenital heart disease (CHD) is one of the most common anomalies worldwide, defined as an anatomical abnormality of the heart and/or great vessels. The aim of review is to find out whether this marker is diagnostically important in detecting and determining the severity of the disease, based on the analysis of NT-proBNP indicators of patients admitted with congenital heart defects under the age of 1 year, and also to check whether there is a correlation between lactate and NT-proBNP among patients with congenital heart defects. In the result NT-proBNP values in 81 critical condition congenital anomaly patients averaged 12811.6±810.7 (445-40163), control group averaged 135.6±14.0 (78-320) among 20 patients, Pf < 0.001 which was reported to be statistically significant. In our study, NT-proBNP indicators of patients diagnosed with CHD were found to be higher in the first 28 days compared to other infant groups (1-6 months and 6-12 months). The results revealed that the difference between the CHD lactate level between the surviving and lethal groups was statistically significant (Pf< 0.001; Pu 0.017). In conclusion, we should state that in our study, blood NT-ProBNP levels in critically ill infants with congenital heart anomalies were found to be approximately 10 times higher than in healthy infants (Pf < 0.001). At the same time, a correlation was established between the blood lactate index and the blood NT-ProBNP level.
REFERENCES
- Liu Y, Chen S, Zuhlke L, Black GC, Choy M-К, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019; 48: 455–463. https://doi.org/10.1093/ije/dyz009.
- Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res. 2017; 120: 908–922. https://doi.org/10.1161/circresaha.116.309302.
- Van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJM, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58: 2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025.
- Liu Y, Chen S, Zühlke L, Black GC, Choy M-K, Li N, Keavney BD. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019; 48: 455–463. https://doi.org/10.1093/ije/dyz009.
- Srisawasdi P, Vanavanan S, Charoenpanichkit C, Kroll MH. The efect of renal dysfunction on BNP, NT-proBNP, and their ratio. Am J Clin Pathol. 2010; 133: 14–23. https://doi.org/10.1309/AJCP60HTPGIGFCNK.
- Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study. Lancet. 2018; 392: 1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7.
- Bernier P-L, Stefanescu A, Samoukovic G, Tchervenkov CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010; 13: 26–34. https://doi.org/10.1053/j.pcsu.2010.02.005.
- Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai Sh, Ford ES, Fox CS, Franco Sh, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB.. Executive summary: heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 2014; 129: 399–410. https://doi.org/10.1161/01.cir.0000442015.53336.12.
- Knowles R, Griebsch I, Dezateux C, Brown J, Bull C, Wren C. Newborn screening for congenital heart defects: a systematic review and costeffectiveness analysis. Health Technol Assess. 2005; 9: 1–152, iii–iv. https://doi.org/10.3310/hta9440.
- Plana MN, Zamora J, Suresh G, Fernandez-Pineda L, Thangaratinam S, Ewer AK. Pulse oximetry screening for critical congenital heart defects. Cochrane Database Syst Rev. 2018; 3(3): CD011912. https://doi.org/10.1002/14651858.CD011912.
- Abbas A, Ewer AK. New born pulse oximetry screening: a global perspective. Early Hum Dev. 2021; 162: 105457. https://doi.org/10.1016/j.earlhumdev.2021.105457.
- Martin GR, Ewer AK, Gaviglio A, Hom LA, Saarinen A, Sontag M, Burns KM, Kemper AR, Oster ME. Updated strategies for pulse oximetry screening for critical congenital heart disease. Pediatrics. 2020; 146: e20191650. https://doi.org/10.1542/peds.2019-1650.
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the heart failure association (HFA) of the ESC. European Journal of Heart Failure. 2016; 37(27): 2129–2200. https://doi.org/10.1093/eurheartj/ehw128.
- Mir TS, Haun C, Lilje C, Laer S, Weil J. Utility of N-terminal brain natriuretic peptide plasma concentrations in comparison to lactate and troponin in children with congenital heart disease following open-heart surgery. Pediatr Cardiol. 2006; 27(2): 209–216. https://doi.org/10.1007/s00246-005-1152-8.
- Cantinotti M, Walters HL, Crocetti M, Marotta M, Murzi B, Clerico A. BNP in children with congenital cardiac disease: Is there now sufficient evidence for its routine use? Cardiol. Young. 2015; 25: 424–437. https://doi.org/10.1017/s1047951114002133.
- Clerico A, Zucchelli GC, Pilo A, Passino C, Emdin, M. Clinical relevance of biological variation: The lesson of brain natriuretic peptide (BNP) and NT-proBNP assay. Clin. Chem. Lab. Med. 2006; 44: 366–378. https://doi.org/10.1515/cclm.2006.063.
- Jungbauer CG, Buchner S, Birner C, Resch M, Heinicke N, Debl K, Buesing M, Biermeier D, Schmitz G, Riegger G, Luchner A. N-terminal pro-brain natriuretic peptide from fresh urine for the biochemical detection of heart failure and left ventricular dysfunction. European Journal of Heart Failure. 2010; 12: 331–337. https://doi.org/10.1093/eurjhf/hfq016.
- Richards AM, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, Frampton C, Turner J, Crozier IG, Yandle TG. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003; 107: 2786–2792. https://doi.org/10.1161/01.cir.0000070953.76250.b9.
- Bakker J, Postelnicu R, Mukherjee V. Lactate: Where Are We Now? Crit. Care Clin. 2020; 36: 115–124. https://doi.org/10.1016/j.ccc.2019.08.009.
- Levy B. Lactate and shock state: The metabolic view. Curr. Opin. Crit. Care. 2006; 12: 315–321. https://doi.org/10.1097/01.ccx.0000235208.77450.15.
- Qafarov İ.A. Biostatistika. Bakı, Təbib, 2022, 240 s. ISBN: 978-9952-37-813-9.
- van der Linde D, Konings EEM, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJM, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58: 2241–2247. https://doi.org/10.1016/j.jacc.2011.08.025.
- Yun SW. Congenital heart disease in the newborn requiring early intervention. Korean J Pediatr. 2011; 54(5): 183–191. https://doi.org/10.3345/kjp.2011.54.5.183.
- van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJM. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011; 8: 50–60. https://doi.org/10.1038/nrcardio.2010.166.
- Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Child Adolesc Health. 2020; 4(3): 185–200. https://doi.org/10.1016/S2352-4642(19)30402-X.
- Maher KO, Reed H, Cuadrado A, Simsic J, Mahle WT, DeGuzman M, Leong T, Bandyopadhyay S. B-type natriuretic peptide in the emergency diagnosis of critical heart disease in children. Pediatrics. 2008; 121(6): e1484-8. https://doi.org/10.1542/peds.2007-1856.
- Harris SL, More K, Dixon B, Troughton R, Pemberton C, Horwood, J, Ellis N, Austin N. Factors afecting N-terminal pro-B-typenatriuretic peptide levels in preterm infants and use in determinationof haemodynamic signifcance of patent ductus arteriosus. Eur JPediatr. 2018; 177: 521–532. https://doi.org/10.1007/s00431-018-3089-y.
- Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E, Aupetit JF, Aumont MC, Galinier M, Eicher JC, Cohen-Solal A, Juillière Y. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol. 2007; 49: 1733–1739. https://doi.org/10.1016/j.jacc.2006.10.081.
- Hauser JA, Demyanets S, Rusai K, Goritschan C, Weber M, Panesar D, Rindler L, Taylor AM, Marculescu R, Burch M, Wojta J, Michel-Behnke I. Diagnostic performance andreference values of novel biomarkers of pediatric heart failure. Heart. 2016; 102(20): 1633–1639. https://doi.org/10.1136/heartjnl-2016-309460.
- Magga J, Marttila M, Mantymaa P, Vuolteenaho O, Ruskoaho H. Brain natriuretic peptide in plasma, atria, and ventricles of vasopressin- and phenylephrine-infused conscious rats. Endocrinology. 1994; 134: 2505–2515. https://doi.org/10.1210/endo.134.6.8194476.
- Rusconi P, Ludwig DA, Ratnasamy C, Mas R, Harmon WG, Colan SD, Lipshultz SE. Serial measurements of serum NT-proBNP as markers of left ventricular systolic function and remodeling in children with heart failure. Am Heart J. 2010; 160: 776–783. https://doi.org/10.1016/j.ahj.2010.07.012.
- Maslennikova I, Bockeriya E, Ivanetc T, Kazantseva I, Degtyarev D. Experience of the natriuretic peptide use in the complex diagnosis and treatment of newborns with heart failure [In Russian]. Pediatriya. 2020; 99(3): 16–22. https://doi.org/10.24110/0031-403X-2020-99-3-16-22.
- Kiess A, Green J, Willenberg A, Ceglarek U, Dähnert I, Jurkutat A, Körner A, Hiemisch A, Kiess W, Vogel M. Age‑Dependent Reference Values forhs‑Troponin T and NT‑proBNP and determining Factors in a Cohort of Healthy Children (The LIFE Child Study). Pediatric Cardiology. 2022; 43: 1071–1083 https://doi.org/10.1007/s00246-022-02827-x.
- Kanbe T, Maeno Y, Fujino H, Kanda H, Hirose A, Okada J, Morikawa T, Iwata S, Iwata O, Matsuishi T. Brain-type natriuretic peptide at birth reflects foetal maturation and antenatal stress. Acta Paediatr. 2009; 98(9): 1421–1425. https://doi.org/10.1111/j.1651-2227.2009.01357.x.
- Richards AM, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, Frampton Ch, Turner J, Crozier IG, Yandle TG. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003; 107: 2786–2792. https://doi.org/10.1161/01.cir.0000070953.76250.b9.
- Clerico A, Giannoni A, Vittorini S, Passino C. Thirty years of the heart as an endocrine organ: physiological role and clinical utility of cardiac natriuretic hormones. Am J Physiol Heart Circ Physiol. 2011; 301(1): H12–H20. https://doi.org/10.1152/ajpheart.00226.2011.
- Ten Kate CA, Tibboel D, Kraemer US. B-type natriureticpeptide as a parameter for pulmonary hypertension in children. Asystematic review Eur J Pediatr. 2015; 174: 1267–1275. https://doi.org/10.1007/s00431-015-2619-0.
- Mendez-Abad P, Zafra-Rodriguez P, Lubian-Lopez S, BenaventeFernandez I. NTproBNP is a useful early biomarkerof bronchopulmonary dysplasia in very low birth weightinfants. Eur J Pediatr. 2019; 178: 755–761. https://doi.org/10.1007/s00431-019-03347-2.
- Buhrer C, Erdeve O, van Kaam A, Berger A, Lechner E, Bar-Oz B, Allegaert K, Stiris T, Celik IH, Berrington J. N-terminalB-type natriuretic peptide urinary concentrations and retinopathyof prematurity. Pediatr Res. 2017; 82: 958–963. https://doi.org/10.1038/pr.2017.179.
- Ogawa T, de Bold AJ. Brain natriuretic Peptide productionand secretion in infammation. J Transplant. 2012: 962347. https://doi.org/10.1155/2012/962347.
- Cantinotti M, Giovannini S, Murzi B, Clerico A. Diagnostic, prognostic and therapeutic relevance of B-type natriuretichormone and related peptides in children with congenital heartdiseases. Clin Chem Lab Med. 2011; 49: 567–580. https://doi.org/10.1515/CCLM.2011.106.
- Pérez-Piaya MR, Abarca E, Soler V, Coca A, Cruz M, Villagrá F, Giannivelli S, Asensio A. Levels of N-terminal-pro-brain natriuretic peptide in congenital heart disease surgery and its value as a predictive biomarker . Interactive CardioVascular and Thoracic Surgery. 2011; 12: 461–466. https://doi.org/10.1510/icvts.2010.245803.
- Sülü A, Kıztanır H, Kosger P, Ucar B. Relationship of Pro-BNP Levels with Cardiovascular Events in Pediatric Cardiac and Non-cardiac Diseases. J Contemp Med. 2023; 13(3): 549–554 . https://doi.org/10.16899/jcm.1279791.
- Lin Z, Chen Y, Zhou L, Chen S and Xia H. Serum N-Terminal Pro-B-Type Natriuretic Peptide as a Biomarker of Critical Pulmonary Stenosis in Neonates. Front. Pediatr. 2022; 9: 788715. https://doi.org/10.3389/fped.2021.788715.
- Walsh R, Boyer C, LaCorte J, Parnell V, Sison C, Chowdhury D, Ojamaa K. N-terminal B-type natriuretic peptide levels in pediatric patients with congestive heart failure undergoing cardiac surgery. J Thorac Cardiovasc Surg. 2008; 135(1): 98–105. https://doi.org/10.1016/j.jtcvs.2007.08.012.