Features of fascin expression in the small intestine of rats exposed to processed Eucheuma seaweed
More Detail
1 Biochemistry Department, Kharkiv National Medical University, Kharkiv, Ukraine
* Corresponding Author
J CLIN MED KAZ, Volume 4, Issue 54, pp. 40-44.
https://doi.org/10.23950/1812-2892-JCMK-00723
OPEN ACCESS
2081 Views
1868 Downloads
ABSTRACT
This study focuses on the assessment of fascin expression in the small intestinal tissue of rats orally administered a food additive E407a (processed Eucheuma seaweed), which is widely used to improve the texture of food products. The issue of its safety is under debate nowadays. Small intestinal expression of fascin, an actin-bundling cytoskeletal protein involved in the formation of filopodia and microspikes, was evaluated immunohistochemically in 9 rats exposed to 140 mg of E407a per kg of weight daily during two weeks and 8 control animals. Fascin was found to be upregulated both in the lamina propria and epithelia of the small intestine in rats administered processed Eucheuma seaweed compared with the control group. Thus, oral consumption of E407a is associated with overexpression of fascin in the small intestine of rats.
REFERENCES
- David S, Shani Levi C, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman, A, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct. 2018; 9(3):1344-1352. https://doi.org/10.1039/C7FO01721A
- Hotchkiss S, Brooks M, Campbell R, Philp K, Trius A. The use of carrageenan in food. In: Pereira L (ed) Carrageenans: sources and extraction methods, molecular structure, bioactive properties and health effects. 1st edn. Nova Science Publications Inc., New York. 2016; 1-293
- Campo VL, Kawano DF, da Silva DB, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Carbohydrate Polymers. 2009; 77(2):167-180. https://doi.org/10.1016/j.carbpol.2009.01.020
- Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina. 2013; 58:187-205. https://doi.org/10.17221/6758-VETMED
- Fiorino GM, Garino C, Arlorio M, Logrieco AF, Losito I, Monaci L. Overview on untargeted methods to combat food frauds: a focus on fishery products. Journal of Food Quality. 2018; 1581746:13. https://doi.org/10.1155/2018/15817466.
- Shah ZC, Huffman FG. Current availability and consumption of carrageenan-containing foods. Ecol. Food Nutr. 2003; 42(6):357-371. https://doi.org/10.1080/03670240390265175
- Nicklin S, Miller K. Intestinal uptake and immunological effects of carrageenan-current concepts. Food Addit. Contam. 1989; 6(4):425-436. https://doi.org/10.1080/02652038909373801
- Bhattacharyya S, Shumard T, Xie H, Dodda A, Varady KA, Feferman L, et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr Healthy Aging. 2017; 4(2):181-192. https://doi.org/10.3233/NHA-170023
- Tobacman JK. The common food additive carrageenan and the alpha-gal epitope. J Allergy Clin Immunol. 2015; 136(6):1708-1709. https://doi.org/10.1016/j.jaci.2015.08.048
- Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001; 109(10):983-994. https://doi.org/10.1289/ehp.01109983
- Tkachenko AS, Onishchenko AI, Gorbach TV, Gubina-Vakulyсk GI. O-6-methylguanine-DNA methyltransferase (MGMT) overexpression in small intestinal mucosa in experimental carrageenan-induced enteritis. Malay. J. Biochem. Mol. Biol. 2018; 21(3):77-80.
- Tkachenko A, Marakushyn D, Kalashnyk I, Korniyenko Y, Onishchenko A, Gorbach T, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica). 2018; 15(2):87-92. https://doi.org/10.17392/946-18
- Tkachenko AS, Marakushyn DI, Rezunenko YK, Onishchenko AI, Nakonechna OA, Posokhov YO. A study of erythrocyte membranes in carrageenan-induced gastroenterocolitis by method of fluorescent probes. HVM Bioflux. 2018; 10(2):37-41.
- Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology. 2015; 24(6):1473-1477. https://doi.org/10.1007/s00580-015-2102-3
- Sokolova EV, Menzorova NI, Davydova VN, Kuz'mich AS, Kravchenko AO, Mishchenko NP, et al. Effects of carrageenans on biological properties of Echinochrome. Mar Drugs. 2018; 16(11):419.https://doi.org/10.3390/md16110419
- Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFκB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochimica et Biophysica Acta-General Subjects. 2008; 1780(7-8):973-982. https://doi.org/10.1016/j.bbagen.2008.03.019
- Bhattacharyya S, Gill R, Chen ML, Zhang F, Linhardt RJ, Dudeja PK, et al. Toll-like receptor 4 mediates induction of the Bcl10- NFkappaB-interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem. 2008; 283(16):10550-8. https://doi.org/10.1074/jbc.M708833200
- Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. The American Journal of Physiology-Gastrointestinal and Liver Physiology. 2007; 292(3):G829-G838. https://doi.org/10.1152/ajpgi.00380.2006
- McKim JM, Willoughby JA Sr, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr. 2019; 59(19):3054-3073. https://doi.org/10.1080/10408398.2018.1481822
- McKim JM Jr, Baas H, Rice GP, Willoughby JA Sr, Weiner ML, Blakemore W. Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol. 2016; 96:1-10. https://doi.org/10.1016/j.fct.2016.07.006
- Machesky LM, Li A. Fascin: invasive filopodia promoting metastasis. Commun Integr Biol. 2010; 3(3):263-270. https://doi.org/10.4161/cib.3.3.11556
- Li J, Zhang S, Pei M, Wu L, Liu Y, Li H, et al. FSCN1 promotes epithelial-mesenchymal transition through increasing Snail1 in ovarian cancer cells. Cell Physiol Biochem. 2018; 49(5):1766-1777. https://doi.org/10.1159/000493622
- Mao X, Duan X, Jiang B. Fascin induces epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating Wnt/β-Catenin signaling. Med Sci Monit. 2016; 22:3479-3485.https://doi.org/10.12659/MSM.897258
- Lovisa S, Genovese G, Danese S. Role of epithelial-to-mesenchymal transition in inflammatory bowel disease. J Crohns Colitis. 2019; 13(5):659-668. https://doi.org/10.1093/ecco-jcc/jjy201
- Qualtrough D, Smallwood K, Littlejohns D, Pignatelli M. The actin-bundling protein fascin is overexpressed in inflammatory bowel disease and may be important in tissue repair. BMC Gastroenterol. 2011; 11:14. https://doi.org/10.1186/1471-230X-11-14
- Qualtrough D, Singh K, Banu N, Paraskeva C, Pignatelli M. The actin bundling protein fascin is overexpressed in colorectal adenomas and promotes motility in adenoma cells in vitro. Br J Cancer. 2009; 101:1124-1129. https://doi.org/10.1038/sj.bjc.6605286
- Zhang X, Cho IH, Park JH, Lee MK, Hwang YS. Fascin is involved in cancer cell invasion and is regulated by stromal factors. Oncol Rep. 2019; 41(1):465-474. https://doi.org/10.3892/or.2018.6847
- Onodera M, Zen Y, Harada K, Sato Y, Ikeda H, Itatsu K, et al. Fascin is involved in tumor necrosis factor-alpha-dependent production of MMP9 in cholangiocarcinoma. Lab Invest. 2009; 89(11):1261-74. https://doi.org/10.1038/labinvest.2009.89
- Chen L, Yao Y, Sun L, Zhou J, Miao M, Luo S, et al. Snail driving alternative splicing of CD44 by ESRP1 enhances invasion and migration in epithelial ovarian cancer. Cell Physiol Biochem. 2017; 43:2489-2504. https://doi.org/10.1159/000484458
- Adams JC. Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol. 2004; 16(5):590-6. https://doi.org/10.1016/j.ceb.2004.07.009
- Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr. 2011; 5(5):409-420. https://doi.org/10.4161/cam.5.5.17644
- Yamashiro S, Yamakita Y, Ono S, Matsumura F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol Biol Cell. 1998; 9(5):993-1006. https://doi.org/10.1091/mbc.9.5.993
- Jayo A, Parsons M, Adams JC. A novel Rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability. BMC Biol. 2012; 10:72. https://doi.org/10.1186/1741-7007-10-72
- Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010; 285(26):20202-12. https://doi.org/10.1074/jbc.M110.102012
- Scharl M, Huber N, Lang S, Fürst A, Jehle E, Rogler G. Hallmarks of epithelial to mesenchymal transition are detectable in Crohn's disease associated intestinal fibrosis. Clin Transl Med. 2015; 4:1. https://doi.org/10.1186/s40169-015-0046-5
- Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005; 24:5764-74. https://doi.org/10.1038/sj.onc.1208927