Immune Response in Obesity and Type 2 Diabetes

Gulzhan Narmuratova 1 2, Yerdan Mukhaliyev 3 * , Jude Deeney 4, Meiramkul Narmuratova 1, Nurshat Abdolla 5
More Detail
1 Department of Biophysics, Biomedicine and Neuroscience and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
2 Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
3 Department of Pediatric Infectious Diseases, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
4 Department of Medicine, Laboratory of Endocrinology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
5 Laboratory of Molecular Immunology and Immunobiotechnology, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, In press. https://doi.org/10.23950/jcmk/15846
OPEN ACCESS 100 Views 0 Downloads
Author Contributions: Conceptualization, J. T. D. and G. N.; methodology, J. T. D. and G. N.; validation, G. N.; formal analysis, G. N.; investigation, G. N. and Y. M.; resources, J. T. D.; data curation, J. T. D.; writing – original draft preparation, G. N., Y. M., M. N. and N. A.; writing – review and editing, Y. M.; visualization, G. N. and Y. M.; supervision, J. T. D.; project administration, J. T. D.; funding acquisition, M. N. and N. A. All authors have read and agreed to the published version of the manuscript.

ABSTRACT

Abstract.
Obesity is a widespread chronic inflammatory disease that can lead to increased health risks and subsequent development of prediabetes and type 2 diabetes. According to the World Obesity Federation (WOF), the prevalence of obese individuals in the world will increase to 1 billion adults by 2030. The WOF includes Kazakhstan as a high-risk country for obesity. In 2030 obesity in Kazakhstan is predicted to reach 25.7% in men, 29% in women, and 9.5% in children aged 5-19.  The National Center for Public Health of the Republic of Kazakhstan has reported a significant increase in the prevalence of overweight and obesity, particularly among children. According to the results of epidemiological monitoring, the rate of obesity among boys was notably higher than that among girls. Specifically, 23.6% of boys were classified as overweight, including obesity, compared to 17.6% of girls. Additionally, 8.7% of boys were classified as obese, compared to 4.6% of girls [1,2]. Recent studies highlight the role of immune cell function in obesity-related inflammation providing a potential new target for treating obesity-linked inflammatory diseases. This review article discusses the role of immune cells in regulating obesity-related diseases, including diabetes.

CITATION

Narmuratova G, Mukhaliyev Y, Deeney J, Narmuratova M, Abdolla N. Immune Response in Obesity and Type 2 Diabetes. J Clin Med Kaz. 2025. https://doi.org/10.23950/jcmk/15846

REFERENCES

  • World Obesity Organization. Available at: https://data.worldobesity.org/publications/World-Obesity-Atlas-2022-updated.pdf.
  • National Report, 2020. Epidemiological surveillance of childhood obesity, nutrition, and physical activity in the Republic of Kazakhstan. 42 p. Available at: https://hls.kz/uploads/publications/Нац%20отчет%20детское%20ожирение%20COSI%202020_рус_w.pdf.
  • Apovian CM, Okemah J, O’Neil PM. Body Weight Considerations in the Management of Type 2 Diabetes. Adv Ther. 2019; 36(1): 44–58. https://doi.org/10.1007/s12325-018-0824-8.
  • Glavas MM, Hui Q, Tudurí E, Erener S, Kasteel NL, Johnson JD, Kieffer TJ. Early overnutrition reduces Pdx1 expression and induces β cell failure in Swiss Webster mice. Sci Rep. 2019; 9(1): 3619. https://doi.org/10.1038/s41598-019-39177-3.
  • Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020; 21(17): 6275. https://doi.org/10.3390/ijms21176275.
  • She Y, Mangat R, Tsai S, Proctor SD, Richard C. The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Front Nutr. 2022; 9: 840209. https://doi.org/10.3389/fnut.2022.840209.
  • López-Reyes A, Martinez-Armenta C, Espinosa-Velázquez R, Vázquez-Cárdenas P, Cruz-Ramos M, Palacios-Gonzalez B, Gomez-Quiroz LE, Martínez-Nava GA. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front Immunol. 2020; 11: 570251. https://doi.org/10.3389/fimmu.2020.570251.
  • Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem. 2017; 8(2): 120. https://doi.org/10.4331/wjbc.v8.i2.120.
  • Wu H, Ballantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. Circ Res. 2020; 126(11): 1549–1564. https://doi.org/10.1161/CIRCRESAHA.119.315896.
  • McLaughlin T, Liu LF, Lamendola C, Shen L, Morton J, Rivas H, Winer D, Tolentino L, Choi O, Zhang H, Hui Yen Chng, M, Engleman E. T-Cell Profile in Adipose Tissue Is Associated With Insulin Resistance and Systemic Inflammation in Humans. Arterioscler Thromb Vasc Biol. 2014; 34(12): 2637–2643. https://doi.org/10.1161/ATVBAHA.114.304636.
  • Schmidt FM, Weschenfelder J, Sander C, Minkwitz J, Thormann J, Chittka T, Mergl R, Kirkby KC, Faßhauer M, Stumvoll M, Holdt LM, Teupser D, Hegerl U, Himmerich H. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. Eckel J, ed. PLOS ONE. 2015; 10(3): e0121971. https://doi.org/10.1371/journal.pone.0121971.
  • Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions. ChemTexts. 2022; 8(2): 12. https://doi.org/10.1007/s40828-022-00163-4.
  • Caër C, Rouault C, Le Roy T, Poitou C, Aron-Wisnewsky J, Torcivia A, Bichet JC, Clément K, Guerre-Millo M, André S. Immune cell-derived cytokines contribute to obesity-related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci Rep. 2017; 7(1): 3000. https://doi.org/10.1038/s41598-017-02660-w.
  • Kim J, Lee J. Role of obesity-induced inflammation in the development of insulin resistance and type 2 diabetes: history of the research and remaining questions. Ann Pediatr Endocrinol Metab. 2021; 26(1): 1–13. https://doi.org/10.6065/apem.2040188.094.
  • Stavropoulos-Kalinoglou A, Metsios GS, Panoulas VF, Nightingale P, Koutedakis Y, Kitas GD. Anti-tumour necrosis factor alpha therapy improves insulin sensitivity in normal-weight but not in obese patients with rheumatoid arthritis. Arthritis Res Ther. 2012; 14(4): R160. https://doi.org/10.1186/ar3900.
  • Butcher MJ, Hallinger D, Garcia E, Machida Y, Chakrabarti S, Nadler J, Galkina EV, Imai Y. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia. 2014; 57(3): 491–501. https://doi.org/10.1007/s00125-013-3116-5.
  • Yu W, Li C, Zhang D, Li Z, Xia P, Liu X, Cai X, Yang P, Ling J, Zhang J, Zhang M, Yu P. Advances in T Cells Based on Inflammation in Metabolic Diseases. Cells. 2022; 11(22): 3554. https://doi.org/10.3390/cells11223554.
  • Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in Immunometabolism. Front Immunol. 2018; 9: 2509. https://doi.org/10.3389/fimmu.2018.02509.
  • Park CS, Shastri N. The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease. Immune Netw. 2022; 22(1): e13. https://doi.org/10.4110/in.2022.22.e13.
  • Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015; 74(1): 5–17. https://doi.org/10.1016/j.cyto.2014.09.011.
  • Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N. T-lymphocyte Infiltration in Visceral Adipose Tissue: A Primary Event in Adipose Tissue Inflammation and the Development of Obesity-Mediated Insulin Resistance. Arterioscler Thromb Vasc Biol. 2008; 28(7): 1304–1310. https://doi.org/10.1161/ATVBAHA.108.165100.
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance. Science. 1993; 259(5091): 87–91. https://doi.org/10.1126/science.7678183.
  • Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature. 1997; 389(6651): 610–614. https://doi.org/10.1038/39335.
  • Ioan-Facsinay A, Kloppenburg M. An emerging player in knee osteoarthritis: the infrapatellar fat pad. Arthritis Res Ther. 2013; 15(6): 225. https://doi.org/10.1186/ar4422
  • Zhao Y, Lin L, Li J, Xiao Z, Chen B, Wan L, Li M, Wu X, Hin Cho C, Shen J. CD4+ T cells in obesity and obesity-associated diseases. Cell Immunol. 2018; 332: 1–6. https://doi.org/10.1016/j.cellimm.2018.08.013.
  • Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med. 2023; 55(11): 2287–2299. https://doi.org/10.1038/s12276-023-01105-x.
  • Turbitt WJ, Buchta Rosean C, Weber KS, Norian LA. Obesity and CD8 T cell metabolism: Implications for anti‐tumor immunity and cancer immunotherapy outcomes. Immunol Rev. 2020; 295(1): 203–219. https://doi.org/10.1111/imr.12849.
  • Wang L, Sun P, Wu Y, Wang L. Metabolic tissue‐resident CD8 + T cells: A key player in obesity‐related diseases. Obes Rev. 2021; 22(3): e13133. https://doi.org/10.1111/obr.13133.
  • Liang W, Qi Y, Yi H, Mao C, Meng Q, Wang H, Zheng C. The Roles of Adipose Tissue Macrophages in Human Disease. Front Immunol. 2022; 13: 908749. https://doi.org/10.3389/fimmu.2022.908749.
  • Ahrendsen JT, Nong Y, Huo Y, Steele J, Anderson MP. CD8 cytotoxic T-cell infiltrates and cellular damage in the hypothalamus in human obesity. Acta Neuropathol Commun. 2023; 11(1): 163. https://doi.org/10.1186/s40478-023-01659-x.
  • Li C, Wang G, Sivasami P, Ramirez RN, Zhang Y, Benoist C, Mathis D. Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab. 2021; 33(8): 1610–1623.e5. https://doi.org/10.1016/j.cmet.2021.06.007.
  • O’Shea D, Hogan AE. Dysregulation of Natural Killer Cells in Obesity. Cancers. 2019; 11(4): 573. https://doi.org/10.3390/cancers11040573.
  • Qin W, Sun L, Dong M, An G, Zhang K, Zhang C, Meng X. Regulatory T Cells and Diabetes Mellitus. Hum Gene Ther. 2021; 32(17–18): 875–881. https://doi.org/10.1089/hum.2021.024.
  • Qiao Y chao, Shen J, He L, Hong XZ, Tian F, Pan YH, Liang L, Zhang XX, Zhao HL. Changes of Regulatory T Cells and of Proinflammatory and Immunosuppressive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Diabetes Res. 2016; 2016: 1–19. https://doi.org/10.1155/2016/3694957.
  • Zhai X, Qian G, Wang Y, Chen X, Lu J, Zhang Y, Huang Q, Wang Q. Elevated B Cell Activation is Associated with Type 2 Diabetes Development in Obese Subjects. Cell Physiol Biochem. 2016; 38(3): 1257–1266. https://doi.org/10.1159/000443073.
  • Oleinika K, Slisere B, Catalán D, Rosser EC. B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity. Clin Exp Immunol. 2022; 210(3): 263–272. https://doi.org/10.1093/cei/uxac079.
  • Harmon DB, Srikakulapu P, Kaplan JL, Oldham SN, McSkimming C, Garmey JC, Perry HM, Kirby JL, Prohaska TA, Gonen A, Hallowell P, Schirmer B, Tsimikas S, Taylor AM, Witztum JL, McNamara CA. Protective Role for B-1b B Cells and IgM in Obesity-Associated Inflammation, Glucose Intolerance, and Insulin Resistance. Arterioscler Thromb Vasc Biol. 2016; 36(4): 682–691. https://doi.org/10.1161/ATVBAHA.116.307166.
  • Wang S, Tan Q, Hou Y, Dou H. Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Front Pharmacol. 2021; 12: 798320. https://doi.org/10.3389/fphar.2021.798320.
  • Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol. 2018; 51: 68–75. https://doi.org/10.1016/j.coi.2018.03.007.
  • Gibson JT, Orlandella RM, Turbitt WJ, Behring M, Manne U, Sorge RE, Norian LA. Obesity-Associated Myeloid-Derived Suppressor Cells Promote Apoptosis of Tumor-Infiltrating CD8 T Cells and Immunotherapy Resistance in Breast Cancer. Front Immunol. 2020; 11: 590794. https://doi.org/10.3389/fimmu.2020.590794.
  • Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol. 2020; 11: 245. https://doi.org/10.3389/fimmu.2020.00245.