Modern Approaches to Diagnosing Cognitive Impairments in Patients with Multiple Sclerosis

Tatyana Polukchi 1 * , Nazira Zharkinbekova 1, Saltanat Erkebayeva 1, Gulfariza Tuksanbayeva 1, Gulnara Mustapayeva 1, Ainur Yessetova 1
More Detail
1 Department of Neurology, psychiatry, rehabilitology and neurosurgery, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 21, Issue 5, pp. 40-45. https://doi.org/10.23950/jcmk/15182
OPEN ACCESS 413 Views 257 Downloads
Download Full Text (PDF)
Author Contributions: Conceptualization, T. P., N. Z.; methodology, T. P., N. Z.; validation, A. Ye.; formal analysis, G. T., A. Ye.; investigation, T. P., G. T.; resources, T. P., A. Ye.; data curation, S. E.; writing – original draft preparation, G. M., T. P., N. Z.; writing – review and editing, T. P., N. Z., G. M.; visualization, S. E., T. P., N. Z.; supervision, T. P., A. Ye.; funding acquisition, not applicable. All authors have read and agreed to the published version of the manuscript.

ABSTRACT

Multiple sclerosis in patients can cause not only motor, sensory, cerebellar and autonomic dysfunctions, but also cognitive and psychoemotional disorders such as difficulty with learning and recalling information, problems focusing on tasks and maintaining attention, slowed ability to process information, depression, anxiety. Cognitive impairment can appear at any stage of the disease and can be observed in more than half of patients.  Patients with multiple sclerosis may not fully recognize or underestimate their complaints of psycho-emotional disturbances, fatigue or pain.  For this reason, doctors should rely on the results of neuropsychological tests. Like all symptoms of multiple sclerosis, cognitive impairment is highly variable and significantly affects patients' work habits, social interactions and quality of life. Therefore, the assessment of cognitive functions in patients with multiple sclerosis is of undoubted interest.

CITATION

Polukchi T, Zharkinbekova N, Erkebayeva S, Tuksanbayeva G, Mustapayeva G, Yessetova A. Modern Approaches to Diagnosing Cognitive Impairments in Patients with Multiple Sclerosis. J CLIN MED KAZ. 2024;21(5):40-5. https://doi.org/10.23950/jcmk/15182

REFERENCES

  • Ward M, Goldman MD. Epidemiology and Pathophysiology of Multiple Sclerosis. Continuum (Minneap Minn). 2022; 28(4): 988–1005. https://doi.org/10.1212/CON.0000000000001136.
  • Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2019; 9(4): a028944. https://doi.org/10.1101/cshperspect.a028944.
  • Haki M, Al-Biati HA, Al-Tameemi ZS, Ali IS, Al-Hussaniy HA. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024; 103(8): e37297. https://doi.org/10.1097/MD.0000000000037297.
  • Khaibullin TN, Kirillova EV, Bikbaev RM, Boyko AN. Kliniko-épidemiologicheskie kharakteristiki rasseiannogo skleroza i optikoneĭromielita v Tsentral'noĭ Azii [Clinical-epidemiological characteristics of multiple sclerosis and neuroopticomyelitis in the Central Asia]. Zh Nevrol Psikhiatr Im S S Korsakova. 2019; 119(2.Vyp.2): 12–17. https://doi.org/10.17116/jnevro20191192212.
  • Meca-Lallana V, Gascón-Giménez F, Ginestal-López RC, Higueras Y, Téllez-Lara N, Carreres-Polo J, et. al. Cognitive impairment in multiple sclerosis: diagnosis and monitoring. Neurol Sci. 2021; 42(12): 5183–5193. https://doi.org/10.1007/s10072-021-05165-7.
  • Piacentini C, Argento O, Nocentini U. Cognitive impairment in multiple sclerosis: "classic" knowledge and recent acquisitions. Arq Neuropsiquiatr. 2023; 81(6): 585–596. https://doi.org/10.1055/s-0043-1763485.
  • Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008; 7(12): 1139–1151. https://doi.org/10.1016/S1474-4422(08)70259-X.
  • Lugosi K, Engh MA, Huszár Z, Hegyi P, Mátrai P, Csukly G, et. al. Domain-specific cognitive impairment in multiple sclerosis: A systematic review and meta-analysis. Ann Clin Transl Neurol. 2024; 11(3): 564–576. https://doi.org/10.1002/acn3.51976.
  • Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12(3): 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.
  • Kim N, Truty T, Duke Han S, Heo M, Buchman AS, Bennett DA, Tasaki S. Digital quantification of the MMSE interlocking pentagon areas: a three-stage algorithm. Sci Rep. 2024; 14(1): 9038. https://doi.org/10.1038/s41598-024-59194-1. PMID: 38641631.
  • Pokryszko-Dragan A, Zagrajek M, Slotwinski K, Bilinska M, Gruszka E, Podemski R. Event-related potentials and cognitive performance in multiple sclerosis patients with fatigue. Neurol Sci. 2016; 37(9): 1545–1556. https://doi.org/10.1007/s10072-016-2622-x. PMID: 27271940.
  • Walker CS, Berard JA, Walker LAS. Validation of Discrete and Regression-Based Performance and Cognitive Fatigability Normative Data for the Paced Auditory Serial Addition Test in Multiple Sclerosis. Front Neurosci. 2021; 15: 730817. https://doi.org/10.3389/fnins.2021.730817.
  • Strober L, DeLuca J, Benedict RH, Jacobs A, Cohen JA, Chiaravalloti N, Hudson LD, Rudick RA, LaRocca NG; Multiple Sclerosis Outcome Assessments Consortium (MSOAC). Symbol Digit Modalities Test: A valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult Scler. 2019; 25(13): 1781–1790. https://doi.org/10.1177/1352458518808204.
  • van Oirschot P, Heerings M, Wendrich K, den Teuling B, Martens MB, Jongen PJ. Symbol Digit Modalities Test Variant in a Smartphone App for Persons With Multiple Sclerosis: Validation Study. JMIR Mhealth Uhealth. 2020; 8(10): e18160. https://doi.org/10.2196/18160.
  • Barker-Collo SL, Purdy SC. Determining the Presence of Reliable Change over Time in Multiple Sclerosis: Evidence from the PASAT, Adjusting-PSAT, and Stroop Test. Int J MS Care. 2013; 15(4): 170–178. https://doi.org/10.7224/1537-2073.2013-007.
  • Amato MP, Prestipino E, Bellinvia A, Niccolai C, Razzolini L, Pastò L, et. al. Cognitive impairment in multiple sclerosis: An exploratory analysis of environmental and lifestyle risk factors. PLoS One. 2019; 14(10): e0222929. https://doi.org/10.1371/journal.pone.0222929.
  • Benedict RHB, Amato MP, DeLuca J, Geurts JJG. Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020; 19(10): 860–871. https://doi.org/10.1016/S1474-4422(20)30277-5.
  • Spain RI, Hildebrand A, Waslo CS, Rooney WD, Emmons J, Schwartz DL, et. al. Processing speed and memory test performance are associated with different brain region volumes in Veterans and others with progressive multiple sclerosis. Front Neurol. 2023; 14: 1188124. https://doi.org/10.3389/fneur.2023.1188124.
  • Amin M, Ontaneda D. Thalamic Injury and Cognition in Multiple Sclerosis. Front Neurol. 2021; 11: 623914. https://doi.org/10.3389/fneur.2020.623914.
  • Freud T, Vostrikov A, Dwolatzky T, Punchik B, Press Y. Validation of the Russian Version of the MoCA Test as a Cognitive Screening Instrument in Cognitively Asymptomatic Older Individuals and Those With Mild Cognitive Impairment. Front Med (Lausanne). 2020; 7: 447. https://doi.org/10.3389/fmed.2020.00447.
  • Rosca EC, Simu M. Montreal cognitive assessment for evaluating cognitive impairment in multiple sclerosis: a systematic review. Acta Neurol Belg. 2020; 120(6): 1307–1321. https://doi.org/10.1007/s13760-020-01509-w.
  • Damasceno A, Amaral JMSDS, Barreira AA, Becker J, Callegaro D, Campanholo KR, et. al. Normative values of the Brief Repeatable Battery of Neuropsychological Tests in a Brazilian population sample: discrete and regression-based norms. Arq Neuropsiquiatr. 2018; 76(3): 163–169. https://doi.org/10.1590/0004-282x20180006.
  • Mohammadian Nejad E, Amouzadeh E, Kashipazha D, Shamsaei G, Cheraghian B. The effect of atomoxetine on cognitive function in patients with multiple sclerosis. Curr J Neurol. 2023; 22(3): 149–154. https://doi.org/10.18502/cjn.v22i3.13792.
  • Corfield F, Langdon D. A Systematic Review and Meta-Analysis of the Brief Cognitive Assessment for Multiple Sclerosis (BICAMS). Neurol Ther. 2018; 7(2): 287–306. https://doi.org/10.1007/s40120-018-0102-3.
  • Langdon DW, Amato MP, Boringa J, Brochet B, Foley F, Fredrikson S, et. al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult Scler. 2012; 18(6): 891–898. https://doi.org/10.1177/1352458511431076.
  • Costabile T, Signoriello E, Lauro F, Altieri M, Ziello AR, D'Ambrosio A, et. al. Validation of an iPad version of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult Scler Relat Disord. 2023; 74: 104723. https://doi.org/10.1016/j.msard.2023.104723.
  • Waskowiak PT, de Jong BA, Uitdehaag BMJ, Saddal SRD, Aarts J, Roovers AAM, et. al.; Don’t be late! Consortium. Don't be late! Timely identification of cognitive impairment in people with multiple sclerosis: a study protocol. BMC Neurol. 2024; 24(1): 26. https://doi.org/10.1186/s12883-023-03495-x.
  • Pless S, Woelfle T, Naegelin Y, Lorscheider J, Wiencierz A, Reyes Ó, et. al. Assessment of cognitive performance in multiple sclerosis using smartphone-based training games: a feasibility study. J Neurol. 2023; 270(7): 3451–3463. https://doi.org/10.1007/s00415-023-11671-9.
  • Martí-Juan G, Sastre-Garriga J, Martinez-Heras E, Vidal-Jordana A, Llufriu S, Groppa S, et. al. Using The Virtual Brain to study the relationship between structural and functional connectivity in patients with multiple sclerosis: a multicenter study. Cereb Cortex. 2023; 33(12): 7322–7334. https://doi.org/10.1093/cercor/bhad041.
  • Mistri D, Tedone N, Biondi D, Vizzino C, Pagani E, Rocca MA, Filippi M. Cognitive phenotypes in multiple sclerosis: mapping the spectrum of impairment. J Neurol. 2024; 271(4): 1571–1583. https://doi.org/10.1007/s00415-023-12102-5.
  • Oset M, Domowicz M, Wildner P, Siger M, Karlińska I, Stasiołek M, Świderek-Matysiak M. Predictive value of brain atrophy, serum biomarkers and information processing speed for early disease progression in multiple sclerosis. Front Neurol. 2023; 14: 1223220. https://doi.org/10.3389/fneur.2023.1223220.
  • Zhao P, Liu X, Wang Y, Zhang X, Wang H, Du X, et. al. Discovery of grey matter lesion-related immune genes for diagnostic prediction in multiple sclerosis. PeerJ. 2023 A; 11: e15299. https://doi.org/10.7717/peerj.15299.
  • Peño LIC, De Silanes De Miguel CL, de Torres L, Ortiz ME, Moreno MJG, et. al. Brain Atrophy and Physical and Cognitive Disability in Multiple Sclerosis. Basic Clin Neurosci. 2023; 14(2): 311–316. https://doi.org/10.32598/bcn.2021.1893.1.
  • Langley C, Masuda N, Godwin S, De Marco G, Smith AD, Jones R, et. al. Dysfunction of basal ganglia functional connectivity associated with subjective and cognitive fatigue in multiple sclerosis. Front Neurosci. 2023; 17: 1194859. https://doi.org/10.3389/fnins.2023.1194859.
  • Akaishi T, Fujimori J, Nakashima I. Basal Ganglia Atrophy and Impaired Cognitive Processing Speed in Multiple Sclerosis. Cureus. 2024; 16(1): e52603. https://doi.org/10.7759/cureus.52603.
  • Vázquez-Marrufo M, Galvao-Carmona A, Caballero-Díaz R, Borges M, Paramo MD, Benítez-Lugo ML, et. al. Altered individual behavioral and EEG parameters are related to the EDSS score in relapsing-remitting multiple sclerosis patients. PLoS One. 2019; 14(7): e0219594. https://doi.org/10.1371/journal.pone.0219594.