Molecular analysis of metallo-β-lactamase genes in some gram-negative bacteria and examination of the phylogenetic relationships of isolates

Farzad Heydari 1, Fatih Koksal 1, Cansu Önlen Güneri 2 * , Suna Kizilyildirim 3
More Detail
1 Department of Medical Microbiology, Medical Faculty, Cukurova University, Adana, Turkey
2 Department of Medical Laboratory Techniques, Medical Microbiology, Gulhane Vocational School of Health Services, Saglik Bilimleri University, Ankara, Turkey
3 Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
* Corresponding Author
J CLIN MED KAZ, Volume 19, Issue 6, pp. 18-26. https://doi.org/10.23950/jcmk/12648
OPEN ACCESS 1354 Views 663 Downloads
Download Full Text (PDF)

ABSTRACT

Aim: This study aimed to determine the susceptibility of carbapenem-resistant Gr (-) bacilli isolated from various clinical infections to various antibiotics and identify genes causing carbapenem resistance and their clonal relationships to elucidate the distribution of resistance in community and/or hospital-acquired strains.
Material and methods: In this study, antibiotic susceptibilities of 450 carbapenem-resistant Gr (-) bacilli isolated from clinical specimens at Cukurova University, Faculty of Medicine, Balcali Hospital, were investigated using phenotypic methods. The presence of carbapenems and β-lactamase genes were searched using polymerase chain reaction (PCR) and sequence analysis methods. Pulsed-field gel electrophoresis (PFGE) method was used to evaluate the phylogenetic relationship of the isolates.
Results: Based on the results, it was determined that 99.23% of the strains had gained resistance to meropenem, whereas 5.38% had developed resistance to colistin. The most dominant carbapenems genes in all isolates were OXA-51, OXA-23-like and OXA-24-like.
Conclusion: It was observed that the only antibiotic that could be used safely in carbapenem-resistant Gr (-) bacilli infections was colistin. In addition, when the clonal relationship of the strains was examined, it was found that the clones considered to be closely related persisted, and these clones settled in different clinics of our hospital.

CITATION

Heydari F, Koksal F, Önlen Güneri C, Kizilyildirim S. Molecular analysis of metallo-β-lactamase genes in some gram-negative bacteria and examination of the phylogenetic relationships of isolates. J CLIN MED KAZ. 2022;19(6):18-26. https://doi.org/10.23950/jcmk/12648

REFERENCES

  • Gülay Z. Gram negatifbakterilerdeki moleküler direnç mekanizmaları. In: Yüce A, Çakır N (Eds). Hastene enfeksiyonları.2. baskı. İzmir: güven kitabevi. 2009;149-79.
  • Arman D. Yoğun bakımda gram negative bakteri sorunu. Ankem derg, 2009;23:148-56.
  • Eser ÖK, Kocagöz S, Ergin A, Altun B, Hasçelik G. Yoğun bakım ünitelerinde enfeksiyon etkeni olan Gram negatif basillerin değerlendirilmesi. Enfeksiyon Derg. 2005;19-80.
  • Erkoç F. Türkmenoğlu F. Enterobacteriaceae Genel Özellikleri. Gazi Eğitim Fakültesi. Ankara,2007.
  • Goossens H, Grabein B. Prevalance and antimicrobial susceptibility data for extendedspectrum beta-lactamase and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997-2004) Diagn Microbiol infect Dis. 2005;53:257-64. https://doi.org/10.1016/j.diagmicrobio.2005.10.001
  • Livermore DM, Hawkey PM.CTX-M:changing the face of ESBLs in the UK. J Antimicrob Chemother. 2005;56:451-4. https://doi.org/10.1093/jac/dki239
  • Boucher HW, Talbot GH, Bradley JS. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48: 1-12. https://doi.org/10.1086/599017
  • McGowan JE. Resistance in nonfermenting gram negative bacteria:multidrug resistance to the maximum. Am J Med. 2006;119:29-36. https://doi.org/10.1016/j.ajic.2006.05.226
  • Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007;74:1686-701. https://doi.org/10.1016/j.bcp.2007.05.021
  • Öztürk CE, Türkmen Albayrak H, Altınöz A, Ankaralı H. Pseudomonas aeruginosa suşlarında antibiyotiklere direnç ve beta laktmaz oranları. Ankem Derg. 2010;24(3):117-123.
  • Mümtaz Güran, Klinik Örneklerden izole edilen Karbapenem dirençli gram olumsuz basillerde karbapenem direncinin moleküler analizi. Doktora tezi .Çukurova Üniversitesi Sağlık Bilimleri Enstitüsü, Adana. 2014.
  • Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010; 65: 490-5. https://doi.org/10.1093/jac/dkp498
  • Voets GM, Fluit AC, Scharringa J, Cohen Stuart J, Leverstein-van Hall MA. A set of multiplex PCRs for genotypic detection of extended-spectrum β-lactamases, carbapenemases, plasmidmediated AmpC β-lactamases and OXA β-lactamases. Int J Antimicrob Agents. 2011; 37: 356-9. https://doi.org/10.1016/j.ijantimicag.2011.01.005
  • Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007; 20: 440–458. https://doi.org/10.1128/CMR.00001-07
  • Durmaz R, Otlu B, Koksal F, Hosoglu S, Ozturk R, Ersoy Y, Aktas E, Gursoy NC, Caliskan A. The optimization of a rapid pulsed-field gel electrophoresis protocol for the typing of Acinetobacter baumannii, Escherichia coli and Klebsiella spp. Japanese Journal of Infectious Diseases. 2009, 62(5):372-377.
  • Kidd TJ, Grimwood K, Ramsay KA, Rainey PB, Bell SC. Comparison of Three Molecular Techniques for Typing Pseudomonas aeruginosa Isolates in Sputum Samples from Patients with Cystic Fibrosis. Journal of Clinical Microbiology. 2011; 263–268. https://doi.org/10.1128/JCM.01421-10
  • Ergin A, Hascelık G, Eser OK. Molecular characterization of oxacillinases and genotyping of invasive Acinetobacter baumannii isolates using repetitive extragenic palindromic sequence-based polymerase chain reaction in Ankara between 2004 and 2010. Scandinavian Journal of Infectious Diseases. 2013; 45: 26–31. https://doi.org/10.3109/00365548.2012.708782
  • Bogaerts P , Naas T , Garch FE, Cuzon G , Deplano A , Delaire T , Huang TD, Lissoir B , Nordmann P, Glupczynski Y. GES Extended-Spectrum β-Lactamases in Acinetobacter baumannii Isolates in Belgium. Antimicrob. Agents Chemother. 2010; 11: 4872–4878. https://doi.org/10.1128/AAC.00871-10
  • Zeka AN, Poirel L, Sipahi OR, Bonnin RA, Arda B, Ozinel M, Ulusoy S, Bor C, Nordmann P. GES-type and OXA-23 carbapenemase producing Acinetobacter baumannii in Turkey. J Antimicrob Chemother. 2013. https://doi.org/10.1093/jac/dkt465
  • Cicek AC, Saral A, Iraz M, Ceylan A, Duzgun AO, Peleg AY, Sandalli C. OXA and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect. 2013; 7: 1469-0691. https://doi.org/10.1111/1469-0691.12338
  • Breidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19: 419-26. https://doi.org/10.1016/j.tim.2011.04.005
  • Fernández L , Breidenstein EB, Hancock RE. Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat Drug Resist Updat. 2011; 14: 1-21. https://doi.org/10.1016/j.drup.2011.01.001
  • Guran M. Escherichia coli ve Klebsiella pneumoniae izolatlarında CTX-M tipi Geniş Spektrumlu Β-Laktamaz genlerinin PCR, PCR-RFLP, Dizi Analizi yöntemleri ile identifikasyonu ve suşlar arasındaki klonal ilişkinin PFGE yöntemi ile belirlenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi Sağlık Bilimleri Enstitüsü, Adana. 2011.
  • Alp E, Perçin D, Colakoğlu S, Durmaz S, Kürkcü CA, Ekincioğlu P, Güneş T. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013; 84: 178-80. https://doi.org/10.1016/j.jhin.2013.03.002
  • Nazik H, Ongen B, Ilktac M, Aydin S, Kuvat N, Sahin A, Yemisen M, Mete B, Durmus MS, Balkan II, Yildiz I, Ergul Y. Carbapenem resistance due to Bla(OXA-48) among ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates in a univesity hospital, Turkey. Southeast Asian J Trop Med Public Health. 2012; 43: 1178-85.
  • Nazık H, Öngen B, Mete B, Aydın S, Yemis M¸ Kelesoglu MF, Ergul Y, Tabak F. Coexistence of blaOXA-48 and aac(6′)-Iβ-cr Genes in Klebsiella pneumoniae Isolates from Istanbul, Turkey. The Journal of International Medical Research. 2011; 39: 1932-1940. https://doi.org/10.1177/147323001103900538
  • Kilic A, Aktas Z, Bedir O, Gumral R, Bulut Y, Stratton C, Tang YW, Basustaoglu AC. Identification and Characterization of OXA-48 Producing, Carbapenem-Resistant Enterobacteriaceae Isolates in Turkey. Annals of Clinical & Laboratory Science, 2011; 41:2-11.
  • Gülmez D, Woodford N, Palepou MF. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolates from Turkey with OXA-48-like carbapenemases and outer membrane protein loss. Int J Antimicrob Agents. 2008; 31: 523–526. https://doi.org/10.1016/j.ijantimicag.2008.01.017
  • Cantón R, Akóva M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P; European Network on Carbapenemases. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012; 18: 413-31. https://doi.org/10.1111/j.1469-0691.2012.03821.x
  • Yang HY, Lee HJ, Suh JT, Lee KM. Outbreaks of ımipenem resistant Acinetobacter baumannii producing OXA-23 B-lactamase in a tertiary care hospital in Korea. Yonsei Med J. 2009; 50(6):764770. https://doi.org/10.3349/ymj.2009.50.6.764
  • Pournaras S, Markogiannakis A, Ikonomidis A, Kondyli L, Bethimouti K, Maniatis N, Legakis NJ,TsakrisA. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. Journal of Antimicrobial Chemotherapy. 2006; 57:557-561. https://doi.org/10.1093/jac/dkl004
  • Mendes RE, Bell J M, Turnidge J D, Castanheira M and Jones R N. Emergence and widespread dissemination of OXA-23, -24/40 and -58 carbapenemases among Acinetobacter spp. in AsiaPacific nations: report from the SENTRY Surveillance Program. Journal of Antimicrobial Chemotherapy. 2009; 63, 55–59. https://doi.org/10.1128/AAC.01497-10
  • Srinivasan V B, Rajamohan G, Pancholi P,Stevenson K, Tadesse D, Patchanee P, Marcon M and Gebreyes W A. Genetic relatedness and molecular characterization of multidrug resistant Acinetobacter baumannii isolated in central Ohio, USA. Annals of Clinical Microbiology and Antimicrobials. 2009; 8:21. https://doi.org/10.1186/1476-0711-8-21
  • Vahaboğlu H, Budak F, Kasap M, Gacar G, Torol S,Karadenizli A,Kolaylı F, Eroğlu C. High prevalence of OXA-51-type class D b-lactamases among ceftazidime-resistant clinical isolates of Acinetobacter spp.: co-existence with OXA-58 in multiple centres. Journal of Antimicrobial Chemotherapy. 2006; 58, 537–542. https://doi.org/10.1093/jac/dkl273
  • Yoo JS, Yang JW, Kim HM, Byeon J, Kim HS, Yoo J Il, Chung GT, Lee YS. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. International Journal of Antimicrobial Agents. 2012;39: 300–304. https://doi.org/10.1016/j.ijantimicag.2011.11.018
  • Pitout JDD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. Journal of Clinical Microbiology. 2007 45: 294– 298. https://doi.org/10.1128/JCM.01694-06