Regulator Non-coding RNAs: miRNA, siRNA, piRNA, lncRNA, circRNA
More Detail
1 Department of Medical Biology, Gülhane Faculty of Medicine, Health Sciences University, Ankara, Turkey
* Corresponding Author
J CLIN MED KAZ, Volume 6, Issue 60, pp. 29-39.
https://doi.org/10.23950/jcmk/9258
OPEN ACCESS
2900 Views
2108 Downloads
ABSTRACT
Gene expression and its regulation play a central role in maintaining life and generation in all living things. According to the central dogma of genetics, DNA plays a central role in gene expression, RNA is synthesized from DNA, and protein is synthesized from RNA. According to recent research results, human DNA produces more regulator non-coding RNA than protein coding RNAs. These RNAs act as important functional regulatory molecules in various cellular processes, including chromatin remodeling, transcription, post-transcriptional modifications and signal transfer. Therefore, the regulator ncRNAs act as key regulators of physiological programs in terms of development and disease. In this review, the main structural and functional properties of miRNA, siRNA, piRNA, lncRNA and circRNA defined as regulator ncRNAs are reviewed.
REFERENCES
- Schleiden MJ. "Beiträge zur Phytogenesis". Archiv für Anatomie, Physiologie und wissenschaftliche Medicin. 1838; 137-176.
- Schwann T. Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Sander. 1839; 1. Auflage.
- Crick F. Central dogma of molecular biology. Nature. 1970; 227:561-563. https://doi.org/10.1038/227561a0
- Seal RL, Chen L, Griffiths-Jones S, Lowe TM, Mathews MB, O'Reilly D, et al. A guide to naming human non-coding RNA genes. The EMBO Journal. 2020; e103777. https://doi.org/10.15252/embj.2019103777
- Andersen J, Delihas N, Ikenaka K, Green PJ, Pines O, Ilercil O, et al. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Res. 1987; 15:2089-2101. https://doi.org/10.1093/nar/15.5.2089
- Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75:843-854. https://doi.org/10.1016/0092-8674(93)90529-Y
- Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990; 10:28-36. https://doi.org/10.1128/MCB.10.1.28
- Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992; 71:515-526. https://doi.org/10.1016/0092-8674(92)90519-I
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391:806-11. https://doi.org/10.1038/35888
- Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000; 408:86-89. https://doi.org/10.1038/35040556
- Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403:901-906. https://doi.org/10.1038/35002607
- Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002; 99:15524-15529. https://doi.org/10.1073/pnas.242606799
- Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005; 102:3627-3632. https://doi.org/10.1073/pnas.0500613102
- He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005; 435:828-833. https://doi.org/10.1038/nature03552
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The Sequence of the Human Genome. Science. 2001; 291:1304-1351. https://doi.org/10.1126/science.1058040
- The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature. 2012; 489:57-73. https://doi.org/10.1038/nature11247
- Anastasiadou E, Jacob LS and Slack FJ. Non-coding RNA networks in cancer. Nature. 2018; 18:5-18. https://doi.org/10.1038/nrc.2017.99
- Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011; 12:99-110. https://doi.org/10.1038/nrg2936
- Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294:853-858. https://doi.org/10.1126/science.1064921
- Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001; 294:858-862. https://doi.org/10.1126/science.1065062
- Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA. 2003; 9:277-279. https://doi.org/10.1261/rna.2183803
- Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004; 32:D109-D111. https://doi.org/10.1093/nar/gkh023
- Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019; 47:D155-D162. https://doi.org/10.1093/nar/gky1141
- Lee Y, Kim M, Han J, Yeom K, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23:4051-4060. https://doi.org/10.1038/sj.emboj.7600385
- Chu CY, Rana TM. Small RNAs: regulators and guardians of the genome. J Cell Physiol. 2007; 213:412-419. https://doi.org/10.1002/jcp.21230
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-233. https://doi.org/10.1016/j.cell.2009.01.002
- Huang T, Alvarez A, Hu B, Cheng S-Y. Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer. 2013b; 32:582. https://doi.org/10.5732/cjc.013.10170
- Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair. 2016; 47:1-11. https://doi.org/10.1016/j.dnarep.2016.09.003
- Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415-419. https://doi.org/10.1038/nature01957
- Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; 432:231-235. https://doi.org/10.1038/nature03049
- Terry LJ, Shows EB, Wente SR. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science. 2007; 318:1412-1416. https://doi.org/10.1126/science.1142204
- Bohnsack MT, Czaplinski K, Go¨rlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004; 10:185-191. https://doi.org/10.1261/rna.5167604
- Chendrimada, TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005; 436:740-744. https://doi.org/10.1038/nature03868
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-233. https://doi.org/10.1016/j.cell.2009.01.002
- Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 9:102-114. https://doi.org/10.1038/nrg2290
- Du P, Wang L, Sliz P, Gregory RI. A biogenesis step upstream of microprocessor controls miR-17 ∼ 92 expression. Cell. 2015; 162:885-99. https://doi.org/10.1016/j.cell.2015.07.008
- Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26:775-783. https://doi.org/10.1038/sj.emboj.7601512
- Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14:1902-1910. https://doi.org/10.1101/gr.2722704
- Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing f coding genes. Front Genet. 2014; 5:100. https://doi.org/10.3389/fgene.2014.00100
- Bartel DP. Metazoan MicroRNAs. Cell. 2018; 173: 20-51 https://doi.org/10.1016/j.cell.2018.03.006
- Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92-105. https://doi.org/10.1101/gr.082701.108
- Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92-105. https://doi.org/10.1101/gr.082701.108
- Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011; 91:827-87. https://doi.org/10.1152/physrev.00006.2010
- Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861-74. https://doi.org/10.1038/nrg3074
- Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev Cell. 2010; 18:510-25. https://doi.org/10.1016/j.devcel.2010.03.010
- Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015; 16:201-12. https://doi.org/10.1038/nrn3879
- Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009; 41:609-613. https://doi.org/10.1038/ng.355
- Panagal M, Biruntha M, Vidhyavathi RM, Sivagurunathan P, Senthilkumar SR, Sekar D. Dissecting the role of miR-21 in different types of stroke. Gene. 2019; 681:69-72. https://doi.org/10.1016/j.gene.2018.09.048
- Yan JJ, Qiao M, Li RH, Zhao XT, Wang XY, Sun Q. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis. Br J Dermatol. 2019; 180:365-372. https://doi.org/10.1111/bjd.17256
- Fernández-Ramos D, Fernández-Tussy P, Lopitz-Otsoa F, Gutiérrez-de-Juan V, Navasa N, Barbier-Torres L, et al. MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis. Cell Death Dis. 2018; 9:958. https://doi.org/10.1038/s41419-018-1014-y
- Guggino G, Orlando V, Saieva L, Ruscitti P, Cipriani P, La Manna MP, et al. Downregulation of miRNA17-92 cluster marks Vc9Vd2 T cells from patients with rheumatoid arthritis. Arthritis Res Ther. 2018; 20:236. https://doi.org/10.1186/s13075-018-1740-7
- Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA, et al. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res. 2017; 2:143-150. https://doi.org/10.1016/j.ncrna.2017.12.002
- Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56:1733-1741. https://doi.org/10.1373/clinchem.2010.147405
- Wang Y, Zheng F, Gao G, Yan S, Zhang L,Wang L, et al. MiR-548a-3p regulates inflammatory response via TLR4/NF-_B signaling pathway in rheumatoid arthritis. J Cell Biochem. 2018; 120:1133-40. https://doi.org/10.1002/jcb.26659
- Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006; 107:102-8. https://doi.org/10.1016/j.imlet.2006.09.005
- Xu D, Song M, Chai C, Wang J, Jin C, Wang X, et al. Exosome-encapsulated miR-6089 regulates inflammatory response via targeting TLR4. J Cell Physiol. 2019; 234:1502-11. https://doi.org/10.1002/jcp.27014
- Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cell proliferation and lymphoblastic leukemia/ high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006; 103:7024-7029. https://doi.org/10.1073/pnas.0602266103
- Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer-a brief overview. Adv Biol Regul. 2015; 57:1-9. https://doi.org/10.1016/j.jbior.2014.09.013
- Iorio MV, Croce CM. microRNA involvement in human cancer. Carcinogenesis. 2012; 33:1126-1133. https://doi.org/10.1093/carcin/bgs140
- Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009; 457:413-420. https://doi.org/10.1038/nature07756
- Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126-39. https://doi.org/10.1038/nrm2632
- Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009; 457:396-404. https://doi.org/10.1038/nature07754
- Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol. https://doi.org/10.1007/978-3-319-42059-2_1
- Nayak A, Tassetto M, Kunitomi M, Andino R. RNA interference-mediated intrinsic antiviral immunity in invertebrates. Intrinsic Immun. 2013; In: Cullen BR, editör:183-200. https://doi.org/10.1007/978-3-642-37765-5_7
- García-Sastre A. Induction and evasion of type I interferon responses by infl uenza viruses. Virus Res. 2011; 162:12-8. https://doi.org/10.1016/j.virusres.2011.10.017
- Sleutels F, Zwart R, Barlow D. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002; 415:810-3. https://doi.org/10.1038/415810a
- Mao Y, Sunwoo H, Zhang B, Spector D. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol. 2011; 13:95-101. https://doi.org/10.1038/ncb2140
- Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006; 313:320-24. https://doi.org/10.1126/science.1129333
- Romano G, Veneziano D, Acunzo M, Croce CM. Small non-coding RNA and cancer. Carcinogenesis. 2017; 385-5:485-491. https://doi.org/10.1093/carcin/bgx026
- Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 2006; 20:1993-1997. https://doi.org/10.1101/gad.1456106
- Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006; 442:203-207. https://doi.org/10.1038/nature04916
- Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006; 442:199-202. https://doi.org/10.1038/nature04917
- Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 2006; 20:1709-1714. https://doi.org/10.1101/gad.1434406
- Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposonderived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 2006; 20:1732-1743. https://doi.org/10.1101/gad.1425706
- Malone CD, Hannon GJ.. Small RNAs as guardians of the genome. Cell. 2009; 136:656-68. https://doi.org/10.1016/j.cell.2009.01.045
- Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem. 2015; 84:405-33. https://doi.org/10.1146/annurev-biochem-060614-034258
- Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006; 313:320-24. https://doi.org/10.1126/science.1129333
- Weick EM, Miska EA. piRNAs: from biogenesis to function. Development. 2014; 141:3458-3471. https://doi.org/10.1242/dev.094037
- Wang G, Reinke V. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol. 2008; 18(12): 861-867. https://doi.org/10.1016/j.cub.2008.05.009
- Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009; 25:355-76. https://doi.org/10.1146/annurev.cellbio.24.110707.175327
- Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009; 137:509-21. https://doi.org/10.1016/j.cell.2009.04.027
- Khurana JS, Xu J, Weng Z, Theurkauf WE. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection. PLOS Genet. 2010; 6:e1001246. https://doi.org/10.1371/journal.pgen.1001246
- Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007; 316:744-47. https://doi.org/10.1126/science.1142612
- Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008; 31:785-799. https://doi.org/10.1016/j.molcel.2008.09.003
- Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007; 450:304-308. https://doi.org/10.1038/nature06263
- Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H. A major epigenetic programming mechanism guided by piRNAs. Dev Cell. 2013; 24:502-516. https://doi.org/10.1016/j.devcel.2013.01.023
- Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004; 431:96-99. https://doi.org/10.1038/nature02886
- Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008; 22:908-917. https://doi.org/10.1101/gad.1640708
- Mei Y, Wang Y, Kumari P, Shetty AC, Clark D, Gable T, et al. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun. 2015; 6:7316. https://doi.org/10.1038/ncomms8316
- Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, et al. RNA sequencing identifies specific PIWIinteracting small non-coding RNA expression patterns in breast cancer. Oncotarget. 2014; 5:9901-9910. https://doi.org/10.18632/oncotarget.2476
- Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012; 26:2361-73. https://doi.org/10.1101/gad.203786.112
- Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, et al. Considerations when investigating lncRNA function in vivo. eLife. 2014. https://doi.org/10.7554/eLife.03058
- Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013; 193:651-69. https://doi.org/10.1534/genetics.112.146704
- Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990; 10: 28-36. https://doi.org/10.1128/MCB.10.1.28
- Tiedge H, Chen W, Brosius J. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci. 1993; 13:2382-2390. https://doi.org/10.1523/JNEUROSCI.13-06-02382.1993
- Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991; 349:38-44. https://doi.org/10.1038/349038a0
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001; 409:860-921. https://doi.org/10.1038/35057062
- Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski. Collection of mRNA-like non-coding RNAs. Nucleic Acids Res. 1999; 27:192-195. https://doi.org/10.1093/nar/27.1.192
- Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007; 316:1484-1488. https://doi.org/10.1126/science.1138341
- Novikova IV, Hennelly SP, Sanbonmatsu KY. Tackling structures of long noncoding RNAs. Int J Mol Sci. 2013; 14(12):23672-23684. https://doi.org/10.3390/ijms141223672
- Bohmdorfer G, Sethuraman S, Rowley MJ, Krzyszton M, Rothi MH, Bouzit L, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heteochromatin. Elife. 2016; 5:e19092. https://doi.org/10.7554/eLife.19092
- Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009; 136:629-641. https://doi.org/10.1016/j.cell.2009.02.006
- Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958; 12:138-163.
- Khalil A, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatinmodifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009; 106:11667-72. https://doi.org/10.1073/pnas.0904715106
- Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Vrielink JAFO, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell. 2013; 49:524-35. https://doi.org/10.1016/j.molcel.2012.11.021
- Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofo-late reductase gene by a non-coding interfering transcript. Nature. 2007; 445:666-70. https://doi.org/10.1038/nature05519
- Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013; 493:231-5. https://doi.org/10.1038/nature11661
- Gong C, Maquat L. lncRNAs transactivate STAU1- mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011; 470:284-8. https://doi.org/10.1038/nature09701
- Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN ε/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009; 19:347-59. https://doi.org/10.1101/gr.087775.108
- Ebert M, Sharp P. Emerging roles for natural microRNA sponges. Curr Biol CB. 2010; 20:R858-61. https://doi.org/10.1016/j.cub.2010.08.052
- Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007; 13: 313-316. https://doi.org/10.1261/rna.351707
- Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: Evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 1996; 132:259-275. https://doi.org/10.1083/jcb.132.3.259
- Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science. 2008; 320:1336-1341. https://doi.org/10.1126/science.1157676
- Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol Oncol. 2019; 13(1):46-60. https://doi.org/10.1002/1878-0261.12404
- Liu X. ABC family transporters. Adv Exp Med Biol. 2019; 1141:13-100. https://doi.org/10.1007/978-981-13-7647-4_2
- Liu Y, Yin L, Chen C, Zhang X, Wang S. Long non-coding RNA GAS5 inhibits migration and invasion in gastric cancer via interacting with p53 protein. Dig Liver Dis. 2020; 52(3):331-338. https://doi.org/10.1016/j.dld.2019.08.012
- Jianga W, Xiab J, Xiea S, Zoua R, Pana S, Wanga Z, et al. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Update. https://doi.org/10.1016/j.drup.2020.100683
- Riva P, Ratti A, Venturin M. The Long Non-Coding RNAs in Neurodegenerative Diseases: Novel Mechanisms of Pathogenesis. Curr Alzheimer Res. 2016; 13:1219-1231. https://doi.org/10.2174/1567205013666160622112234
- Liang J, Chen W, Lin J. LncRNA: An all-rounder in rheumatoid arthritis. J Transl Int Med. 2019; 7:3-9. https://doi.org/10.2478/jtim-2019-0002
- Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016; 17:205-211. https://doi.org/10.1038/nrm.2015.32
- Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495:333-338. https://doi.org/10.1038/nature11928
- Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976; 8:547-55. https://doi.org/10.1016/0092-8674(76)90223-3
- Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979; 280:339-40. https://doi.org/10.1038/280339a0
- Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993; 7:155-60. https://doi.org/10.1096/fasebj.7.1.7678559
- Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014; 9:e90859. https://doi.org/10.1371/journal.pone.0090859
- Yang L, Fu J, Zhou Y. Circular RNAs and their emerging roles in immune regulation. Front Immunol. 2018; 9:2977. https://doi.org/10.3389/fimmu.2018.02977
- Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495:384-8. https://doi.org/10.1038/nature11993
- Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. GPB. 2018; 16: 226-233. https://doi.org/10.1016/j.gpb.2018.08.001
- Liu M, Wang Q, Shen J, Yang BB, Ding X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019b; 16:899-905. https://doi.org/10.1080/15476286.2019.1600395
- Gla_zar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014; 20:1666-1670. https://doi.org/10.1261/rna.043687.113
- Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol. 2017; 14:1064-74. https://doi.org/10.1080/15476286.2016.1269999
- Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015; 4:e07540. https://doi.org/10.7554/eLife.07540
- Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015; 58:870-85. https://doi.org/10.1016/j.molcel.2015.03.027
- Guo T, Ding H, Jiang H, Bao N, Zhou L, Zhao J. miR-338-5p Regulates the viability, proliferation, apoptosis and migration of rheumatoid arthritis fibroblast-like synoviocytes by targeting NFAT5. Cell Physiol Biochem. 2018; 49:899-910. https://doi.org/10.1159/000493222
- Derks KW, Misovic B, van den Hout MC, Kockx CE, Gomez CP, Brouwer RW, et al. Deciphering the RNA landscape by RNAome sequencing. RNA Biol. 2015; 12:30-42. https://doi.org/10.1080/15476286.2015.1017202
- Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495:333-8. https://doi.org/10.1038/nature11928
- Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALUrepeats. RNA. 2013; 19:141-57. https://doi.org/10.1261/rna.035667.112
- Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Wu YM, et al. The landscape of circular RNA in Cancer. Cell. 2019; 176:869-81. https://doi.org/10.1016/j.cell.2018.12.021
- Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495:333-8. https://doi.org/10.1038/nature11928
- Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 2011; 146:353-358. https://doi.org/10.1016/j.cell.2011.07.014
- Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018; 17:79. https://doi.org/10.1186/s12943-018-0827-8
- Zheng XB, Zhang M, Xu MQ. Detection and characterization of ciRS-7: a potential promoter of the development of cancer. Neoplasma. 2017; 64:321-8. https://doi.org/10.4149/neo_2017_301
- Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013; 51:792-806. https://doi.org/10.1016/j.molcel.2013.08.017
- Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017; 14:361-9. https://doi.org/10.1080/15476286.2017.1279788
- Chen X, Yang T, Wang W, Xi W, Zhang T, Li Q, et al. Circular RNAs in immune responses and immune diseases. Theranostics. 2019; 9:588-607. https://doi.org/10.7150/thno.29678
- Sheng JQ, Liu L, Wang MR, Li PY. Circular RNAs in digestive system cancer: potential biomarkers and therapeutic targets. Am J Cancer Res. 2018; 8:1142-56.
- Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, et al. Circular RNAs: a novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci. 2017; 13:1497-506.https://doi.org/10.7150/ijbs.22531
- Granados-Riveron JT, Aquino-Jarquin G. The complexity of the translation ability of circRNAs. Biochim Biophys Acta. 2016; 1859:1245-51. https://doi.org/10.1016/j.bbagrm.2016.07.009
- Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015; 5:16435. https://doi.org/10.1038/srep16435
- Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018; 37:1805-14. https://doi.org/10.1038/s41388-017-0019-9
- Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 2018; 9:4475. https://doi.org/10.1038/s41467-018-06862-2