The relationship between the exercise capacity and somatotype components, body composition, and quadriceps strength in individuals with coronary artery disease

Melike Gültekin 1, Gülay Yeğinoğlu 2, Hasan Bingöl 3 *
More Detail
1 Department of Anatomy, Institute of Health Science, Karadeniz Technical University, Trabzon, Turkey
2 Department of Anatomy, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
3 Department of Therapy and Rehabilitation, Vocational School of Health Services, Mus Alparslan University, Muş, Turkey
* Corresponding Author
J CLIN MED KAZ, Volume 18, Issue 6, pp. 62-68. https://doi.org/10.23950/jcmk/11345
OPEN ACCESS 1602 Views 934 Downloads
Download Full Text (PDF)

ABSTRACT

Goal: The purpose of this cross-sectional study was to explore a possible relationship between exercise capacity and somatotype components, body composition, and quadriceps strength in individuals with coroner artery disease (CAD)
Material and Methods: A convenient sample size of 60 participants between the ages of 45 and 60 years (mean age 56.6 ±4.7; 12 females [mean age 57.7±3.01], 48 males [mean age;56.3±5.1] was established from patients referred to the Department of the Cardiopulmonary Rehabilitation. The exercise was assessed using graded symptom-limited exercise testing while Participants' body composition was detected via Bioelectrical impedance analysis (BIA) technique by using TANITA SC-330 (TANITA, Tokyo, Japan). Finally, quadriceps femoris muscles testing was conducted with Dr Robert W. Lovett’s manual muscle testing method.
Results: In the whole sample, exercise capacity was found to be negatively and weakly correlated with the endomorph component (r = - 0.39), whereas a slight and positive correlation was observed between the ectomorph component and exercise capacity (r = 0.28). However, the correlations revealed between exercise capacity and somatotype components differentiated with gender-based analysis. A moderate and weak correlation was found out between exercise capacity and fat mass (FM) in the whole group and the male individuals (r1=-0.45 and r2=-0.34), respectively; in contrast, there was not a meaningful correlation between the same variables in the female individuals(r=-0.002).  Exercise capacity had slight and negative relationships with free-fat mass variable (FFM) in both gender (r1 = -0.28 and r2=-0.29), while small to moderate relationship with fat-mass variable (FM) in the male gender (r1=-0.34). Body composition elements, including FM, FFM and BMI, together explained a % 24  of variance in exercise capacity, while somatotype components together explained a % 16 of variance in the exercise capacity.  Finally, quadriceps femoris strength was found to be  the best predictor of  exercise capacity of a patient with CAD (R2=0.44 or % 44)
Conclusion: Our results suggest that exercise capacity in individuals with CAD is directly associated with somatotype components, anthropometry/body composition elements, and quadriceps strength.

CITATION

Gültekin M, Yeğinoğlu G, Bingöl H. The relationship between the exercise capacity and somatotype components, body composition, and quadriceps strength in individuals with coronary artery disease. J CLIN MED KAZ. 2021;18(6):62-8. https://doi.org/10.23950/jcmk/11345

REFERENCES

  • Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study. Lancet. 2013; 385:117-171. doi: 10.1016/S0140-6736(14)61682-2. Epub 2014 Dec 18.
  • Members WG, Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013; 127:e6. doi: 10.1161/CIR.0b013e31828124ad.
  • Williams S, Jones E, Bell W, Davies B, Bourne M. Body habitus and coronary heart disease in men: A review with reference to methods of body habitus assessment. Eur Heart J.1997;18(3):376-93. doi: 10.1093/oxfordjournals.eurheartj.a015258.
  • Hajar R. Risk factors for coronary artery disease: historical perspectives. Heart Views. 2017;18(3):109-114. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_106_17.
  • Girelli D, Martinelli N, Peyvandi F, Olivieri O. Genetic architecture of coronary artery disease in the genome-wide era: implications for the emerging “golden dozen” loci. Semin Thromb Hemost. 2009;35(7):671-82. doi: 10.1055/s-0029-1242721.
  • Rosengren A, Hawken S, Ôunpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 11-177. doi: 10.1016/S0140-6736(04)17019-0.
  • Williams SR, Goodfellow J, Davies B, Bell W, McDowell I, Jones E. Somatotype and angiographically determined atherosclerotic coronary artery disease in men. Am J Hum Biol. 2000;12(1):128-138. doi: 10.1002/(SICI)1520-6300(200001/02)12:1<128::AID-AJHB14>3.0.CO;2-X
  • Ryan-Stewart H, Faulkner J, Jobson S. The influence of somatotype on anaerobic performance. PloS one. 2018 ;13(5):e0197761. doi: 10.1371/journal.pone.0197761.
  • Bastien M, Poirier P, Lemieux I, Després J-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369-81. doi: 10.1016/j.pcad.2013.10.016.
  • Pagidipati NJ, Zheng Y, Green JB, McGuire DK, Mentz RJ, Shah S, et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am Heart J. 2020;219:47-57. doi: 10.1016/j.ahj.2019.09.016.
  • Marta C, Marinho D, Costa A, Barbosa T, Marques M. Somatotype is more interactive with strength than fat mass and physical activity in peripubertal children. J Hum Kinet. 2011;29A:83-91. doi: 10.2478/v10078-011-0063-4.
  • Hillman C, Heinecke E, Hii J, Cecins N, Jenkins S, Eastwood P. Relationship between body composition, peripheral muscle strength and functional exercise capacity in patients with severe chronic obstructive pulmonary disease. Intern Med J. 2012;42(5):578-81. doi: 10.1111/j.1445-5994.2012.02771.x.
  • Maeder M, Muenzer T, Rickli H, Brunner-La Rocca H, Myers J, Ammann P. How accurately are maximal metabolic equivalents estimated based on the treadmill workload in healthy people and asymptomatic subjects with cardiovascular risk factors? Int J Sports Med. 2008;29(8):658-63. doi: 10.1055/s-2007-989319.
  • Kozlov S, Caprnda M, Chernova O, Matveeva M, Alekseeva I, Gazdikova K, et al. Peak responses during exercise treadmill testing using individualized ramp protocol and modified Bruce protocol in elderly patients. Folia Med (Plovdiv). 2020; 31;62(1):76-81. doi: 10.3897/folmed.62.e49809.
  • Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002; 4;346(11):793-801. doi: 10.1056/NEJMoa011858.
  • Kamiya K, Mezzani A, Hotta K, Shimizu R, Kamekawa D, Noda C, et al. Quadriceps isometric strength as a predictor of exercise capacity in coronary artery disease patients. Eur J Prev Cardiol. 2014;21(10):1285-91. doi: 10.1177/2047487313492252.
  • Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015 ;26(5):303-10. doi:10.1016/j.ejim.2015.04.013.
  • Rodgers GP, Ayanian JZ, Balady G, Beasley JW, Brown KA, Gervino EV, et al. American College of Cardiology/American Heart Association clinical competence statement on stress testing: a report of the American College of Cardiology/American Heart Association/American College of Physicians–American Society of internal medicine task force on clinical competence. Circulation. 2000;102(14):1726-38. doi: 10.1161/01.cir.102.14.1726.
  • Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Duvernoy WF, Froelicher VF, et al. ACC/AHA guidelines for exercise testing: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on exercise testing). J Am Coll Cardiol. 1997;30(1):260-311. doi: 10.1016/s0735-1097(97)00150-2.
  • Banerjee A, Newman DR, Van den Bruel A, Heneghan C. Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta‐analysis of prospective studies. Int J Clin Pract. 2012;66(5):477-92. doi: 10.1111/j.1742-1241.2012.02900.x.
  • Fletcher G, Ades P, Kligfield P, Arena R, Balady G, Bittner V,et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44. Epub 2013 Jul 22.
  • Wang J, Thornton J, Kolesnik S, Pierson Jr. Anthropometry in body composition: an overview. Ann N Y Acad Sci. 2000; 904:317-26. doi: 10.1111/j.1749-6632.2000.tb06474.x.
  • Engin B, Kutlubay Z, Yardımcı G, Vehid HE, Ambarcıoğlu P, Serdaroğlu S, et al. Evaluation of body composition parameters in patients with psoriasis. Int J Dermatol. 2014;53(12):1468-73. doi: 10.1111/ijd.12171.
  • Peterson CM, Thomas DM, Blackburn GL, Heymsfield SB. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr. 2017;105(3):772. doi: 10.3945/ajcn.116.151985.
  • Naqvi U, Sherman AL. Muscle Strength Grading. 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 –. PMID: 28613779.
  • Bohannon RW. Manual muscle testing: does it meet the standards of an adequate screening test? Clin Rehabil. 2005;19(6):662-7. doi: 10.1191/0269215505cr873oa.
  • Ross W, Marfell-Jones MJ. Kinanthropometry. Physiological testing of the high-performance athlete. 1991; Accessed at:https://books.google.com.tr/books/about/Physiological_Testing_of_the_High_perfor.html?id=t98LAQAAMAAJ&redir_esc=y
  • Yang LT, Wang N, Li ZX, Liu C, He X, Zhang JF, et al. Study on the adult physique with the Heath-Carter anthropometric somatotype in the Han of Xi'an, China. A Anat Sci Int. 2016 ;91(2):180-7. doi: 10.1007/s12565-015-0283-0. Epub 2015 May 5.
  • Norton K, Olds T. Anthropometrica: a textbook of body measurement for sports and health courses. UNSW press. Accessed at: https://books.google.com.tr/books/about/Anthropometrica.html?id=0amPPwAACAAJ&redir_esc=y
  • Quiterio ALD, Carnero EA, Baptista FM, Sardinha LB. Skeletal mass in adolescent male athletes and nonathletes: relationships with high-impact sports. J Strength Cond Res. 2011;25(12):3439-47. doi: 10.1519/JSC.0b013e318216003b.
  • Bell W, Davies J, Evans W, Scanlon M, Mullen R. Somatic characteristics and cardiovascular risk factors in growth hormone deficiency: A randomized, double‐blind, placebo‐controlled study of the effect of treatment with recombinant human growth hormone. Am J Hum Biol : The Official Journal of the Human Biology Association. 2004;16(5):533-43. doi: 10.1002/ajhb.20055.
  • Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812-16823. doi: 10.1002/jcp.28350.
  • Gupta R, Guptha S, Sharma KK, Gupta A, Deedwania P. Regional variations in cardiovascular risk factors in India: India heart watch. World J Cardiol. 2012;4(4):112-20. doi: 10.4330/wjc.v4.i4.112.
  • Malik A, Kanduri JS, Asbeutah AAA, Khraishah H, Shen C, Welty FK. Exercise Capacity, Coronary Artery Fatty Plaque, Coronary Calcium Score, and Cardiovascular Events in Subjects With Stable Coronary Artery Disease. J Am Heart Assoc. 2020;9(7):e014919. doi: 10.1161/JAHA.119.014919.
  • Herrera H, Rebato E, Hernández R, Hernández-Valera Y, Alfonso-Sánchez M. Relationship between somatotype and blood pressure in a group of institutionalized Venezuelan elders. Gerontology. 2004;50(4):223-9. doi: 10.1159/000078351.
  • Malina RM, Katzmarzyk PT, Song TM, Theriault G, Bouchard C. Somatotype and cardiovascular risk factors in healthy adults. Am J Hum Biol. 1997;9(1):11-19. doi: 10.1002/(SICI)1520-6300(1997)9:1<11::AID-AJHB3>3.0.CO;2-T.
  • Salimi HR, Heidari N, Salimi A. The relation between somatotype with aerobic capacity and balance in the boys 11-13 years. Turk J Kin. 2016; 2(2): 23-26 Accessed at: https://dergipark.org.tr/tr/download/article-file/220318
  • Spain D, Nathan D, Gellis M. Weight, body type and the prevalence of coronary atherosclerotic heart disease in males. Am J Med Sci. 1963;245:63-9. PMID: 13978493
  • Marta CC, Marinho DA, Barbosa TM, Carneiro AL, Izquierdo M, Marques MC. Effects of body fat and dominant somatotype on explosive strength and aerobic capacity trainability in prepubescent children. J Strength Cond Res. 2013;27(12):3233-44. doi: 10.1519/JSC.0000000000000252.
  • Çinarli F, Kafkas M. The effect of somatotype characters on selected physical performance parameters. Physical education of students. 2019;23(6):279-87. https://doi.org/10.15561/20755279.2019.0602
  • Aslanger E, Assous B, Bihry N, Beauvais F, Logeart D, Cohen-Solal A. Association between baseline cardiovascular mechanics and exercise capacity in patients with coronary artery disease. Anatol J Cardiol 2016 Aug;16(8):608-613. doi: 10.5152/AnatolJCardiol.2015.6471. Epub 2015 Nov 18.
  • Chang J, Froelicher VF. Clinical and exercise test markers of prognosis in patients with stable coronary artery disease. Curr Probl Cardiol. 1994;19(9):533-87. doi: 10.1016/0146-2806(94)90010-8.
  • İri R, Yılmaz A, Aktuğ Z . The comparison of physical fitness levels and motoric features of elite footballers and handball players. Journal of Sports and Performance Researches. 2017; (1) 8:19-25. Accessed at: https://dergipark.org.tr/tr/download/article-file/1032809.
  • Tuan S, Su H, Chen Y, Li M, Tsai Y, Yang C, et al. Fat mass index and body mass index affect peak metabolic equivalent negatively during exercise test among children and adolescents in Taiwan. Int J Environ Res Public Health. 2018;15(2):263. doi: 10.3390/ijerph15020263.
  • Norman A-C, Drinkard B, McDuffie JR, Ghorbani S, Yanoff LB, Yanovski JA. Influence of excess adiposity on exercise fitness and performance in overweight children and adolescents. Pediatrics. 2005;115(6):e690-6. doi: 10.1542/peds.2004-1543.
  • Goran M, Fields D, Hunter G, Herd S, Weinsier R. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841-8. doi: 10.1038/sj.ijo.0801241.
  • Willig AL, Hunter GR, Casazza K, Heimburger DC, Beasley TM, Fernandez JR. Body fat and racial genetic admixture are associated with aerobic fitness levels in a multiethnic pediatric population. Obesity (Silver Spring). 2011;19(11):2222-7. doi: 10.1038/oby.2011.
  • Hsieh P-L, Chen M-L, Huang C-M, Chen W-C, Li C-H, Chang L-C. Physical activity, body mass index, and cardiorespiratory fitness among school children in Taiwan: a cross-sectional study. Int J Environ Res Public Health. 2014;11(7):7275-85. doi: 10.3390/ijerph110707275.
  • Vaara JP, Kyröläinen H, Niemi J, Ohrankämmen O, Häkkinen A, Kocay S,et al. Associations of maximal strength and muscular endurance test scores with cardiorespiratory fitness and body composition. J Strength Cond Res. 2012;26(8):2078-86. doi: 10.1519/JSC.0b013e31823b06ff.
  • Guclu MB, Ince DI, Arikan H, Savci S, Tulumen E, Tokgozoglu L. A comparison of pulmonary function, peripheral and respiratory muscle strength and functional capacity in the heart failure patients with different functional classes. Anadolu Kardiyol Derg. 2011;11(2):101-6. doi: 10.5152/akd.2011.027.
  • Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis. 2015;57(5):443-53. doi: 10.1016/j.pcad.2014.10.006.
  • Almodhy M, Ingle L, Sandercock GR. Effects of exercise-based cardiac rehabilitation on cardiorespiratory fitness: A meta-analysis of UK studies. Int J Cardiol. 2016;221:644-51. doi: 10.1016/j.ijcard.2016.06.101.