Ventricular-arterial Coupling: Advances and Current Perspectives in Cardiovascular Research

Bauyrzhan Toktarbay 1, Aizhan Zhankorazova 1, Zaukiya Khamitova 1, Dinara Jumadilova 1, Alessandro Salustri 1 *
More Detail
1 Department of Medicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, In press. https://doi.org/10.23950/jcmk/15569
OPEN ACCESS 132 Views 76 Downloads
Download Full Text (PDF)
Author Contributions: Writing – original draft preparation, BT; project administration, AZ; data curation, ZK; investigation, DJ; Conceptualization, writing – review and editing, funding acquisition, AS. All authors have read and agreed to the published version of the manuscript.

ABSTRACT

The concept of ventricular-arterial coupling (VAC) was first introduced in the early 1980s to quantify the relationship between left ventricular contractility and arterial load. The mathematical formulation of VAC, expressed as the ratio of arterial elastance to ventricular elastance, has since then been refined with adjustments to allow for non-invasive assessment. By the early 2000s, advancements in echocardiography, cardiac magnetic resonance and arterial tonometry provided non-invasive alternatives to the traditional invasive method of cardiac catheterization, broadening the clinical application of VAC. Emerging technologies, such as machine learning and computational models, have further enhanced the precision and personalization of VAC, with potential applications in heart failure, hypertension and other clinical scenarios.
This review describes the physiological basis and the historical development of VAC, highlights the non-invasive assessment techniques, and discusses the potential for personalized treatment based on VAC insights. Machine learning models trained on large datasets from non-invasive imaging modalities may open new avenues in predicting individual patient responses to therapies. However, lack of standardized protocols across imaging modalities represents a challenge, making the call for standardization critical for consistent clinical application. This review underscores the need for harmonized methodologies to better utilize VAC in personalized medicine, aiming to improve cardiovascular outcomes through tailored therapies.

CITATION

Toktarbay B, Zhankorazova A, Khamitova Z, Jumadilova D, Salustri A. Ventricular-arterial Coupling: Advances and Current Perspectives in Cardiovascular Research. J Clin Med Kaz. 2024. https://doi.org/10.23950/jcmk/15569

REFERENCES

  • Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245(5 Pt 1). https://doi.org/10.1152/ajpheart.1983.245.5.H773.
  • Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86(2):513-21. https://doi.org/10.1161/01.cir.86.2.513.
  • Sunagawa K, Sagawa K, Maughan WL. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163-89. https://doi.org/10.1007/BF02584229.
  • Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. Eur J Heart Fail. 2019;21(4):402-424. https://doi.org/10.1002/ejhf.1436.
  • Chantler PD. Arterial Ventricular Uncoupling With Age and Disease and Recoupling With Exercise. Exerc Sport Sci Rev. 2017;45(2):70-79. https://doi.org/10.1249/JES.0000000000000100.
  • Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4(1):23-36. https://doi.org/10.1016/j.hfc.2007.10.001.
  • Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol (1985). 2008;105(4):1342-51. https://doi.org/10.1152/japplphysiol.90600.2008.
  • Namasivayam M, Adji A, Lin L, Hayward CS, Feneley MP, O'Rourke MF, et al. Non-Invasive Quantification of Ventricular Contractility, Arterial Elastic Function and Ventriculo-Arterial Coupling from a Single Diagnostic Encounter Using Simultaneous Arterial Tonometry and Magnetic Resonance Imaging. Cardiovasc Eng Technol. 2020;11(3):283-294. https://doi.org/10.1007/s13239-020-00462-2.
  • Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56(4):555-62. https://doi.org/10.1161/HYPERTENSIONAHA.110.157321.
  • Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125(6):1659-66. https://doi.org/10.1016/0002-8703(93)90756-y.
  • Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996 Nov 15;94(10):2497-506. https://doi.org/10.1161/01.cir.94.10.2497.
  • Shishido T, Hayashi K, Shigemi K, Sato T, Sugimachi M, Sunagawa K. Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation. 2000 Oct 17;102(16):1983-9. https://doi.org/10.1161/01.cir.102.16.1983.
  • Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001 Dec;38(7):2028-34. https://doi.org/10.1016/s0735-1097(01)01651-5.
  • Bastos MB, Burkhoff D, Maly J, Daemen J, den Uil CA, Ameloot K, et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur Heart J. 2020;41(12):1286-1297. https://doi.org/10.1093/eurheartj/ehz552.
  • Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson. 2016 Aug 26;18(1):51. https://doi.org/10.1186/s12968-016-0269-7.
  • Arvidsson PM, Green PG, Watson WD, Shanmuganathan M, Heiberg E, De Maria GL, et al. Non-invasive left ventricular pressure-volume loops from cardiovascular magnetic resonance imaging and brachial blood pressure: validation using pressure catheter measurements. Eur Heart J Imaging Methods Pract. 2023 Oct 25;1(2):qyad035. https://doi.org/10.1093/ehjimp/qyad035.
  • Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588-605. https://doi.org/10.1093/eurheartj/ehl254.
  • Zhou J, Du M, Chang S, Chen Z. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound. 2021;19(1):29. https://doi.org/10.1186/s12947-021-00261-2.
  • Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974 Jul;35(1):117-26. https://doi.org/10.1161/01.res.35.1.117.
  • Walsh TF, Hundley WG. Assessment of ventricular function with cardiovascular magnetic resonance. Cardiol Clin. 2007;25(1):15-33. https://doi.org/10.1016/j.ccl.2007.01.002.
  • Kass DA, Maughan WL. From 'Emax' to pressure-volume relations: a broader view. Circulation. 1988;77(6):1203-12. https://doi.org/10.1161/01.cir.77.6.1203.
  • Kelly R, Hayward C, Ganis J, Daley J, Avolio A, O'Rourke M. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol. 1989;1:142-9.
  • West R, Ellis G, Brooks N; Joint Audit Committee of the British Cardiac Society and Royal College of Physicians of London. Complications of diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications. Heart. 2006;92(6):810-4. https://doi.org/10.1136/hrt.2005.073890.
  • Marcu CB, Beek AM, van Rossum AC. Clinical applications of cardiovascular magnetic resonance imaging. CMAJ. 2006;175(8):911-7. https://doi.org/10.1503/cmaj.060566.
  • Muller JC, Kennard JW, Browne JS, Fecher AM, Hayward TZ. Hemodynamic monitoring in the intensive care unit. Nutr Clin Pract. 2012;27(3):340-51. https://doi.org/10.1177/0884533612443562.
  • Otero HJ, Rybicki FJ, Greenberg D, Mitsouras D, Mendoza JA, Neumann PJ. Cost-effective diagnostic cardiovascular imaging: when does it provide good value for the money? Int J Cardiovasc Imaging. 2010;26(6):605-12. https://doi.org/10.1007/s10554-010-9634-z.
  • Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function. J Echocardiogr. 2019;17(1):10-16. https://doi.org/10.1007/s12574-018-0405-5.
  • Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986;250(6 Pt 2). https://doi.org/10.1152/ajpregu.1986.250.6.R1021.
  • Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.
  • Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, et al. Echocardiographic assessment of pulmonary hypertension: standard operating procedure. Eur Respir Rev. 2012;21(125):239-48. https://doi.org/10.1183/09059180.00003912.
  • Sevilla T, Revilla-Orodea A, San Román JA. Timing of Intervention in Asymptomatic Patients with Aortic Stenosis. Eur Cardiol. 2021;16. https://doi.org/10.15420/ecr.2021.11.
  • Yokoyama H, Yamanaka F, Shishido K, Ochiai T, Yokota S, Moriyama N, et al. Prognostic Value of Ventricular-Arterial Coupling After Transcatheter Aortic Valve Replacement on Midterm Clinical Outcomes. J Am Heart Assoc. 2021;10(18). https://doi.org/10.1161/JAHA.120.019267.
  • Antonini-Canterin F, Enache R, Popescu BA, Popescu AC, Ginghina C, Leiballi E, et al. Prognostic value of ventricular-arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: a five-year follow-up study. J Am Soc Echocardiogr. 2009 Nov;22(11):1239-45. https://doi.org/10.1016/j.echo.2009.08.009. Epub 2009 Sep 26
  • Trambaiolo P, Figliuzzi I, Salvati M, Bertini P, Brizzi G, Tocci G, et al. Ventriculo-arterial coupling in the intensive cardiac care unit: A non-invasive prognostic parameter. Int J Cardiol. 2022;348:85-89. https://doi.org/10.1016/j.ijcard.2021.12.026.
  • Lian H, Li S, Zhang Q, Wang X, Zhang H. U-shaped prognostic value of left ventricular-arterial coupling in septic patients: a prospective study. Eur J Med Res. 2024 Aug 29;29(1):435. https://doi.org/10.1186/s40001-024-02037-6.
  • Johannesen J, Fukuda R, Zhang DT, Tak K, Meier R, Agoglia H, et al. Direct comparison of echocardiography speckle tracking and cardiac magnetic resonance feature tracking for quantification of right ventricular strain: a prospective intermodality study in functional mitral regurgitation. Echo Res Pract. 2022;9(1):11. https://doi.org/10.1186/s44156-022-00011-8.