Development and Printing of a Customized 3D Model of a Solitary Humeral Cyst as a Stage in Surgical Treatment of Bone Defects Using Orgignal Bone Replased Material

Bakhtiyar Makhatov 1 * , Berik Tuleubayev 1, Amina Koshanova 1
More Detail
1 Department of Surgery, NAO "Karaganda Medical University", Karaganda, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 21, Issue 6, pp. 91-94. https://doi.org/10.23950/jcmk/15701
OPEN ACCESS 195 Views 113 Downloads
Download Full Text (PDF)
Author Contributions: Conceptualization, B. T.; methodology, B. T.; validation, B. M.; formal analysis, B. M.; investigation, B. M.; resources, not applicable; data curation, B. M.; writing – original draft preparation, B. M.; writing – review and editing, A. K; visualization, B. M.; supervision, B. T.; project administration, B. T.; funding acquisition, not applicable. All authors have read and agreed to the published version of the manuscript.

ABSTRACT

Objective: To study the possibilities of using 3D technology in preoperative planning and surgical treatment for solitary bone cyst.
Methods. As part of this work, a 3D model of a solitary cyst of the proximal humerus of a 14-year-old teenager was formed based on CT scans for  printing a bone defect sample on a 3D printer. 
Results. During processing, 3D slicer, 3D paint and Rhinoceros programs were used to create a virtual bone model and edit it further. Printing was done using ABS plastic and thermoplastic polyurethane using the FDM method. A comparison of the samples was made, taking into account the necessary characteristics for future filling of the model with bone plastic material and formation of an individualized graft. 
Conclusion. The results of the study showed the feasibility and simplicity of the technique for creating and printing 3D bone models. This method can be fully utilized to create customized grafts that are identical in shape to the bone cyst.

CITATION

Makhatov B, Tuleubayev B, Koshanova A. Development and Printing of a Customized 3D Model of a Solitary Humeral Cyst as a Stage in Surgical Treatment of Bone Defects Using Orgignal Bone Replased Material. J CLIN MED KAZ. 2024;21(6):91-4. https://doi.org/10.23950/jcmk/15701

REFERENCES

  • Arutjunjan MG. Zagotovka kostnogo allografta i ego primenenie v Respublike Kazahstan. In: Aktual'nye voprosy tkanevoj i kletochnoj transplantologii : Sbornik tezisov VII Vserossijskogo simpoziuma s mezhdunarodnym uchastiem, Astrahan', 27–28 aprelja 2017 goda [In Russian]. Astrahan: Astrahanskij gosudarstvennyj medicinskij universitet, 2017. P. 8–10.
  • Hotim OA. Sostojanie kostnoj tkani u detej s kostnymi kistami. In: Dostizhenija sovremennogo sestrinskogo dvizhenija i praktiki : sbornik materialov k 30-letiju vysshego sestrinskogo obrazovanija v Respublike Belarus [In Russian]. Grodno: Grodnenskij gosudarstvennyj medicinskij universitet, 2022. P. 139–141.
  • Jarikov AV, Gorbatov RO, Denisov AA, Smirnov II, Fraerman AP, Sosnin AG, Perl'mutter OA, Kalinkin AA. Primenenie additivnyh tehnologij 3d-pechati v nejrohirurgii, vertebrologii, travmatologii i ortopedii [In Russian]. Klinicheskaja praktika. 2021; 12(1): 90–104. https://doi.org/10.17816/clinpract64944.
  • Alessandri G, Frizziero L, Santi GM, Liverani A, Dallari D, Vivarelli L, Di Gennaro GL, Antonioli D, Menozzi GC, Depaoli A, Rocca G, Trisolino G. Virtual Surgical Planning, 3D-Printing and Customized Bone Allograft for Acute Correction of Severe Genu Varum in Children. Journal Of Personalized Medicine. 2022; 12(12): 2051. https://doi.org/10.3390/jpm12122051.
  • Ardente DF, Fusaro FM, Abad MP, Soldado F, Coll JQ. The utilization of computer planning and 3D-printed guide in the surgical management of a reverse Hill-Sachs lesion. JSES Int. 2020; 4(3): 569–573. https://doi.org/10.1016/j.jseint.2020.04.013.
  • Chen CJ, Brien EW. Early postoperative compilations of bone filling in curettage defects. Journal of Orthopaedic Surgery and Research. 2019; 4(1): 261. https://doi.org/10.1186/s13018-019-1297-4.
  • Dong C, Beglinger I, Krieg AH. Personalized 3D-printed guide in malignant bone tumor resection and following reconstruction-17 cases in pelvic and extremities. Surgical Oncology-Oxford. 2022; 42: 101733. https://doi.org/10.1016/j.suronc.2022.101733.
  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging. 2012; 30(9): 1323–1341. https://doi.org/10.1016/j.mri.2012.05.001.
  • Gering DT. A system for surgical planning and guidance using image fusion and interventional. Thesis (S.M.). Cambridge: Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
  • Gould L. 3D Modeling and Rendering for the Rest of Us – 2017. https://web.archive.org/web/20090709092144/.
  • Grimson E, Leventon M, Ettinger G, Chabrerie A, Ozlen F, Nakajima S, Atsumi H, Kikinis R, Black P. Clinical experience with a high precision image-guided neurosurgery sy. Medical Image Computing and Computer-Assisted Intervention. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 1998. Lecture Notes in Computer Science, vol. 1496. Berlin: Springer, Heidelberg, 1998. https://doi.org/10.1007/BFb0056188.
  • Huotilainen E, Salmi M, Lindahl J. Three-dimensional printed surgical templates for fresh cadaveric osteochondral allograft surgery with dimension verification by multivariate computed tomography analysis. Knee. 2019; 26(4): 923–932. https://doi.org/10.1016/j.knee.2019.05.007.
  • Iizuka K. Welcome to the Wonderful World of 3D. Optics and Photonics News. 2007; 18(2): 24–29.
  • Meng M, Wang J, Sun T, Zhang W, Zhang J, Shu L, Li Zh. Clinical applications and prospects of 3D printing guide templates in orthopaedics. Journal of Orthopaedic Translation. 2022; 35: 22–41. https://doi.org/10.1016/j.jot.2022.03.001.
  • Nasri E, Reith JD. Aneurysmal bone cyst: a review. Journal of Pathology and Translational Medicine. 2023; 3(57): 81–87.
  • Gering DT, Nabavi A, Kikinis R, Hata N, O'Donnell LJ, Grimson WEL, Jolesz FA, Black PM, Wells WM. An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and an Open MR. Journal of Magnetic Resonance Imaging. 2010; 13(6): 967–975. https://doi.org/10.1002/jmri.1139.
  • Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. JAAOS: Global Research and Reviews. 2021; 5(4): e20.00230-11. https://doi.org/10.5435/JAAOSGlobal-D-20-00230.
  • Wu ZG, Fu J, Wang Z, Li XD, Li J, Pei YJ, Pei GX, Li D, Guo Z, Fan HB. Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology. International Orthopaedics. 2015; 39 (6): 1151–1158. https://doi.org/10.1007/s00264-015-2719-5.